
PART II
RESEARCH PAPERS

3. INTELLIGENCE OF DISTRIBUTED AGENTS

3.1 Goodness of Fit Measures for Intelligent Control of Interacting Machines
S. Phoha, D. Friedlander, The Pennsylvania State University, USA

3.2 Distributed Internet-Based Multi-Agent Intelligent Infrastructure System
X. Qin, A. E. Aktan, K. Grimmelsen, F.N. Catbas, R. Barrish, M. Pervizpour,
E. Kulcu, Drexel University, USA

3.3 STIGMERGY — An Intelligence Metric for Emergent Distributed Behaviors
R. R. Brooks, The Pennsylvania State University, USA

3.4 Performance Self-Assessment by and for Regulation in Autonomous Agents
E. S. Tzafestas, National Technical University, Greece

3.5 On Measuring Intelligence in Multi-Agent Systems
S. P. Tolety, GTE Labs, USA and G. Uma

3.6 On the Development of Metrics for Multi-Robot Teams within the ALLIANCE Architecture
L. E. Parker, Oak Ridge National Lab, USA

3.7 Shared Autonomy and Teaming: A Preliminary Report
H. Hexmoor, University at Buffalo, USA and H. Duchscherer, University of ND, USA

3.8 Real Time Distributed Expert System for Automated Monitoring of Key
Monitors in Hubble Space Telescope
R. Fakory, M. Jahangiri, NASA, USA

3.9 Evaluating Performance of Distributed Intelligent Control Systems
W. J. Davis, University of Illinois, USA

3.10 Hypothesis Testing for Complex Agents
J. Bryson, MIT, W. Lowe, Tufts University, and L.A. Stein, MIT, USA

172

173

174

175

176

177

178

179

180

181

182

183

184

185

Stigmergy – An Intelligence Metric for Emergent Distributed Behaviors

Richard R. Brooks
Applied Research Laboratory

The Pennsylvania State University
P.O. Box 30

State College, PA 16803-0030
Email: rrb@acm.org

Abstract

Individual autonomous components can be constructed using simple
behaviors based entirely on locally available information. Simple
components aggregate to form complex systems with complex
behaviors. Artificial life research has proposed guidelines for
constructing colonies of autonomous systems. Simulations
mimicking biological systems show these guidelines adequately
explain the behavior of many insect species. The complexity of
aggregated behavior often depends on stigmergy. Stigmergy occurs
when behaviors by individuals modify the environment while being
regulated by the environment’s state. Stigmergy has generally been
studied for the forward problem: predicting the consequences of local
behaviors. It is also applicable to the backward problem: synthesizing
local behaviors to fulfill a global need. The concept provides an
objective measure of intelligence for natural and synthetic systems. A
system’s intelligence is measured by its amount of effective
stigmergy. It not only adapts to a changing environment, but also
modifies the environment to suit the system’s needs and goals.
Keywords: intelligence metrics, artificial life, stigmergy,

distributed intelligence

1. INTRODUCTION

“Self-centered – someone who does not think about me.” -
Coluche (French Comedian

)
Egotistically, most people consider another person

intelligent when the other person agrees with them. The
Turing test is an egregious example of this tendency. A system
is intelligent, when its behavior resembles human behavior.
While flattering, this measure is not very objective .
Objectively, intelligence is a combination of many attributes.
These include the ability to:

• Achieve goals
• Compete with others
• Cooperate with others
• Develop new unexpected behaviors
• Adapt to a changing environment

These attributes are necessary but not sufficient for

describing intelligence. A truly intelligent system should also
interact with its environment, modifying the environment to

its advantage. This ability is based on what is called stigmergy
by Grassé [16].

Grassé coined the term stigmergy while studying highly
evolved societies of cooperating individuals. The societies
shared the following characteristics:
• Construction of climate controlled communal housing
• Individuals altruistically sacrifice themselves for the

common good
• Equitable distribution of work among their members
• Division of tasks among castes of specialized workers
• Domestication of other species
• Creation of logistic networks to support cities and war

campaigns
These societies belong to the most universally successful
species on earth, controlling most of the air and ground space.
They are distinguished by having six legs.

A collective view of intelligence is not limited to the
behaviors of insect societies. Cellular Automata research
shows how networks of extremely simple automata
collectively emulate general computation engines, such as
Turing and von Neumann machines [27]. Connectionist
methods in artificial intelligence create complex behaviors in a
network of extremely simple computation engines [10].
Minsky’s Society of Mind describes human behavior emerging
from interactions among multiple simpler individual entities
[19].

Bonabeau’s work [3, 4, 5] provides a starting point for an
objective definition and measure of intelligence. An
individual, or society of individuals, is intelligent when it
exhibits a significant degree of stigmergy. It not only adapts to
its environment, it interacts with the environment, forcing the
environment to adapt to its needs and goals. This interaction is
not purely deterministic but results in new behaviors that
advance the system towards its goal.

The rest of this paper is organized as follows: Section 2
discusses relevant aspects of cellular automata, on appropriate
formalism for studying interactions of distributed systems.
Relevant studies of insect colonies are provided in section 3,
along with the original concept of stigmergy. Section 4
discusses applications of pheromones and stigmergy to
synthetic systems. Some applications reproduce lifelike
behaviors. Other applications create synthetic environments
using stigmergy-like control mechanisms. Section 5 describes

a distributed system where simple behaviors of local systems
combine to produce complex adaptive behavior for the
network. A possible stigmergy scale is further discussed in
section 6, which concludes the paper.

2. CELLULAR AUTOMATA

A cellular automata (CA) is a synchronously interacting

set of elements (network nodes) defined as a synchronous
network of abstract machines [1]. A CA is defined by:

• d the dimension of the automata
• r the radius of an element of the automata
• d the transition rule of the automata
• s the set of states of an element of the automata

An element’s (node’s) behavior is a function of its internal
state and those of neighboring nodes as defined by d. The
simplest instance of a CA is uniform has a dimension of 1, a
radius of 1, and a binary set of states. In this simplest case for
each individual cell there are a total of 23 possible
configurations of a node’s neighborhood at any time step.
Each configuration can be expressed as an integer v:

v = Σji*2i+1 (1)

where: i is the relative position of the cell in the neighborhood
(left=-1,current position =0, right=1), and ji is the binary value
of the state of cell i. Each transition rule can therefore be
expressed as a single integer r:

∑
=

=
8

1
2*

v
vjvr (2)

where jv is the binary state value for the cell at the next time
step if the current configuration is v. This is the most widely
studied type of CA. It is a very simple many-to-one mapping
for each individual cell. The aggregated behaviors can be quite
complex [11]. Wolfram [27] has created four qualitative
complexity classes of CA’s:

• Stable - Evolving into a homogeneous state.
• Repetitive - Evolving into a set of stable or periodic

structures.
• Chaotic - Evolving into a chaotic pattern.
• Interesting - Evolving into complex localized structures.

Two further results show the computational abilities of
the CA. Simple CA’s can be constructed that reproduce
themselves. This was one of the initial concepts von Neumann
had in mind when he originated the CA model [11]. CA
networks of sufficient size are capable of simulating general
computations [17]. Networks containing interactions of
extremely simple automata are therefore capable of producing
arbitrarily complex aggregated system behavior.

This is related to the ability of neural networks to produce
complex behaviors through network interactions among
simple threshold devices. Feed-forward and competition
networks can infer complex piecewise linear classification
functions from a set of examples [10, 22]. These abstractions
support the concept that intelligence is a property of

aggregated system interactions, rather than individual
components. It is worth noting that most connectionist
approaches rely on randomly choosing initial conditions in the
network.

3. INSECT BEHAVIORS

Artificial life researchers seek new approaches to

intelligence, coordination, and self-organization among
distributed autonomous systems in insect colony behaviors
[24, 21]. Self-organization is very important in living systems.
The basic ingredients of self-organization are [3]:
• Positive feedback - includes recruitment and

reinforcement of behaviors.
• Negative feedback - counterbalances positive feedback to

stabilize the system.
• Amplification of fluctuations - randomness and

fluctuations are crucial to system adaptation.
• Multiple interactions - simple behaviors at the micro level

aggregate into intelligent adaptations at the macro level.
In addition, arthropods have a number of broadcast signals
such as alarms [25]. These primitives are biologically inspired
and the basis of many complex animal behaviors such as
swarming, flocking, etc.

Insect colonies use pheromones to provide positive and
negative feedback signals with these characteristics [14].
Pheromones are natural chemicals secreted by individual
animals, and received by other individuals using the sense of
smell. They influence the behavior and development of the
receivers. Pheromone interactions have been used to model
food collection, nest building, task allocation, and war in
insect societies [3]. Computer simulations based on these
explanations have produced colony behaviors similar to those
found in nature [5].

Stigmergy is indirect communication between one or
more agents through the environment using pheromone
interactions [16]. An individual interacts with its environment
depositing pheromones. The specific pheromone left depends
on the task being performed by the individual. Pheromones
degrade and diffuse over time. They also aggregate as shown
in figure 1. In this way, multiple interactions can be combined
automatically to provide a single information source
describing the aggregate state of the environment. Stigmergy
expresses the synergy that occurs when multiple agents form a
feedback loop with their environment.

The presence of pheromones in the environment provides
dynamic information that regulates individual behaviors.
Individual actions aggregate into macro-behaviors and
pheromone signals aggregate into macro-information. In this
way an agent modifies its environment, and the environment
adapts to the needs of the agent.

The best-known example of this is foraging for food by
ant colonies. Dorigo has expanded the basic concept into a
general optimization methodology [12]. Each ant in a colony

k

1

i = 1

performs two basic behaviors, regulated by two basic
pheromones:

• Look for food – wander in a stochastic manner
depositing a “searching for food” pheromone. If the “found
food” pheromone is detected, the stochastic movement is
weighted to favor movement towards the “found food”
pheromone.

• Bring food to the nest – when food is located, the ant
picks it up. As long as the ant carries food it deposits the
“found food” pheromone. It moves in a stochastic manner
weighted towards the direction with the strongest “searching
for food” pheromone signal.

In [12] and [5] this behavior is analyzed in detail. By
heading towards the strongest concentrations of the
pheromones, ants tend to follow the direct path. By allowing
stochastic deviations, premature convergence to sub-optimal
solutions is averted. By aggregating behaviors of many
individuals, the system achieves a large degree of robustness.

Note that random decisions play a large role in this
behavior. This resembles the use of random initial conditions
in neural networks. Many other meta-heuristic approaches,
such as genetic algorithms and simulated annealing [7], rely
on stochastic, non-deterministic choices to find good quality
results.

4. SYNTHETIC ECOSYSTEMS

Self-organizing systems are characterized in Bonabeau [3] by:

• Creation of spatio-temporal structures in initially
homogeneous media.

• Co-existence of many possible and reasonable solutions.
• The existence of bifurcations; common in non-linear

systems [2].

Self-organizing systems of this type have several
appealing aspects, such as robustness and conservation of
resources. The existence of multiple possible solutions means
that if one solution becomes untenable another can be found.
Basing behavior on local decisions using purely local
information reduces latency and bandwidth consumption. For
these reasons a number of artificial systems have been
designed using these principles.

Synthetic stigmergy has been applied to distributed route
planning [5], military command and control [23], factory
workflow design [9], and telecommunications networks [4]. It
provides a convenient formalism for expressing dynamic
interactions of multiple agents.

All of these approaches construct a synthetic environment
for cooperating agents. Agents change the environment,
adding information to it in the form of pheromones. Specific
attributes of the pheromone such as speed of dissipation,
diffusion rate, and meaning are specific to the individual
application. Multiple simple agents then use the information
aggregated by the environment to steer their partially
stochastic behaviors. Note the similarity between this
approach and the CA formalism. Macroscopic interactions
between simple individual components provide complex
adaptive behaviors.

5. AUTONOMOUS SENSOR NETWORKS

One application of this approach is in sensor networks.

Distributed sensor networks use multiple autonomous sensor
nodes to provide a sensing system with greater precision and
dependability than any component sensor nodes [7]. When
multiple sensor nodes survey the same region, redundancy
reduces system sensitivity to single points of failure. At any
point in time, a single sensor provides a single data point.

Figure 1 – Pheromone primitive characteristics for information diffusion and reinforcement

Collaborative signal processing aggregates data points into a
more reliable global estimate with dependability estimates.
This is similar to using multiple experiments to statistically
determine a parameter value and its variance [20]. A number
of military and commercial applications exist for this
technology [6, 13].

Sensor nodes do local processing and relay information
among themselves. They self-organize into a coherent whole,
forming an ad hoc multi-hop network. Data is relayed from
one node to another. Routing choices can be made
dynamically using self-organization primitives such as
pheromones. Master nodes determine a frequency-hopping
schedule that slave nodes follow. Data can be forwarded from
one cluster of nodes to the next, until a gateway to the Internet
is reached, at which point, a number of user workstations can
access the information simultaneously.

Sensor networks have a number of unique aspects.
Manual deployment and placement of a large network of
sensors would be time consuming and expensive. Ideally the
nodes could be deployed automatically. When the number of
nodes increases beyond a trivial number, manual network
organization becomes problematic as well. Figure 2 illustrates
many of the factors that influence network organization and
deployment.

When there are a large number of nodes, manual task
distribution becomes onerous and time consuming. If conflicts
exist in the needs of different user communities the process
becomes even more challenging. All of these reasons point to

the fact that the networks must be capable of self-organization
and autonomous tasking.

Nodes have a finite lifetime, which is shortened by
computation, sensing, data transmission, and data reception
because they are battery-powered. Most distributed
dependability theories are irrelevant to these networks [15].
Distributed dependability verifies the properties of safety (lack
of undesirable events in the network) and liveness (a networks
eventual return to a long-term steady state). Since batteries
will eventually be exhausted, the network will eventually fail.
The property of liveness is impossible to attain. Instead, the
system must strive for adaptability. It should reconfigure and
tolerate multiple faults. Routing algorithms should avoid
creating “hot-spots” that frequently relay data through the
multi-hop network, since they will fail much more quickly
than the rest of the network. Traffic to relay system
housekeeping information should be kept to an absolute
minimum.

Traffic patterns for sensor networks differ from those in
more traditional ad hoc mobile communications networks,
such as cell-phones. In traditional ad hoc networks,
communications are desired between two specific nodes
(customers). The network routing protocol needs to find the
node no matter where it is located in the network. Sensor
networks have the opposite task. Information is required about
a specific location. The node identity is irrelevant. For this
reason, routing is data-centric.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

σ

 Ps– Sensor position
 rs – Sensor position range
 rc – Sensor communication
range
 σ – Variance of sensor position
in stochastic grid

 Ps– Sensor position
 rs – Sensor position range
 rc – Sensor communication
range
 σ – Variance of sensor position
in stochastic grid

Ps

rs

 rc

Figure 2. When networks are manually or autonomously deployed and configured, a number of factors need
to be considered. These include sensor range rs and communications range rc. In the current implementation
rs > rc. In addition to this the nodes position is generally known from GPS units and have an associated
uncertainty

In cell-phone networks, communications occur between
nodes in the network for a conversation of unknown length.
Conversation length is often modeled as an exponential
distribution. A reasonable goal is to find a path through the
network, which asymptotically approaches the least cost path
over time. In sensor networks, queries tend to be punctual.
They are either to inform the user of the current state, or
inform the user quickly when a given event occurs. It will not
be unusual for a single packet to be sufficient. Asymptotic
optimality is irrelevant. Transient effects that can be ignored
in other systems become much more important. Figure 3
illustrates an example of the transient effects modeled for a
simple network.

The Reactive Sensor Network project at the Pennsylvania
State University Applied Research Laboratory implements a

mobile code infrastructure that augments sensor network
adaptability [8]. This approach is inspired by the active
network paradigm [26].

This approach helps in implementing a self-tasking
network. Specific node work assignments need not be known
in advance. The software can be reconfigured and modified as
needs arise. Similarly if the battery fails on a node performing
an essential task, another node can download the software
needed to replace it. Figure 4 provides a view of how the
individual nodes interact to form a single multicomputer.
Notice that it is a macroscopic multicomputer aggregating the
behaviors of its autonomous components.

Pheromone based control is also possible. One candidate
pheromone is remaining battery power. Another candidate
pheromone is distance to an Internet gateway. Combining the

Figure 4. The network is a large computing system formed of individual nodes and sensing devices. Task
distribution is determined based on current workloads.

Figure 3 An example transient effect modeled for packet density in a simple sensor network.

two pheromones provides a self-organizing sensor data
network synthetic eco-system that avoids the creation of “hot-
spots.” This extends the useful lifetime of the network. The
CA formalism is useful in exploring a distributed system like
autonomous sensor networks (figure 4). Behaviors of
individual nodes can be simple and guided by local
information. What is important is that the entire system
develops complex adaptive behavior from interactions among
the nodes.

6. CONCLUSION

Unfortunately, most intelligence metrics are inherently

subjective. They often translate into the Supreme Court’s
metric for pornography: “I know it when I see it.” Equally
unfortunately, most of us recognize intelligence mainly when
looking in the mirror. An example of this type of subjective
and narcissistic metric is the Turing test. For the concept of
intelligence to be useful, it needs an objective metric.

Can a purely deterministic system be considered
intelligent? If this is the case, arithmetic equations and
statements of fact are legitimate candidates for intelligence.
To the contrary, intelligence is beyond rote memorization and
execution of explicit recipes. Intelligence has a creative
aspect. An intelligent entity must provide unexpected,
creative, appropriate, results. This implies a nondeterministic,
random, or stochastic component. Distributed networks of
simple interacting automata are robust examples and are
capable of performing general computations [27].

Two existing qualitative hierarchies provide objective
metrics of intelligence:
• Chomsky’s language hierarchy: (1) regular grammars

recognized by finite state automata, (2) context free
grammars recognized by push-down automata, (3) context
sensitive languages recognized by linear bounded
automata, and (4) recursively enumerable sets recognized
by Turing machines [18].

• Wolfram’s complexity classes of CA’s: (1) stable, (2)
repetitive, (3) chaotic, and (4) interesting.

To measure the IQ of intelligent systems another qualitative
scale is needed that measures systems interactions with their
environment:
• Nonadaptive – most systems
• Adaptive – can regulate parameters to fit environmental

conditions. Most controllers would be in this class.
• Self-Organizing – adapt to their environment and

autonomously reorganize as required. [12] and [8] are
examples of this class.

• Full stigmergy – modify the environment to suit their
goals. Nest building termites, wasps, and humans are in
this category.
Discussing intelligent systems presupposes that

intelligence is not a purely human attribute. It is an attribute in
both living and artificial systems. For that reason, it is
appropriate to use concepts from biological studies of non-

human intelligence. In simulations of insect societies and
construction of artificial systems, stigmergy has been the key
to designing robust, creative, emergent behaviors. An
appropriate metric for comparing intelligence should be based
on the system’s stigmergy, stigmergy being the system’s
ability to interact with and modify its environment to advance
the system’s goals.

7. ACKNOWLEDGMENTS

This effort is sponsored by the Defense Advance

Research Projects Agency (DARPA) and the Air Force
Research Laboratory, Air Force Materiel Command, USAF,
under agreement number F30602-99-2-0520 (Reactive Sensor
Network). The U.S. Government is authorized to reproduce
and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views
and conclusions contained herein are those of the author’s and
should not be interpreted as necessarily represent the official
policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency (DARPA), the
Air Force Research Laboratory, or the U.S. Government.

8. REFERENCES

[1] Adami, C., Introduction to Artificial Life, Springer

Verlag, New York, 1998.
[2] Alligood, K.T., Sauer, T.D. and Yorke. J.A., Chaos: an

introduction to dynamical systems. Springer Verlag, New
York. 1997.

[3] Bonabeau, E., Theraulaz, G., Deneubourg, J-L, Aron, S.
and Camazine, S. "Self-organization in social insects,"
Working Papers of the Satna Fe Institute 1997.
http://www.santafe.edu/sfi/publications/Working-
Papers/97-04-032.txt, 1997.

[4] Bonabeau, E., Henaux, F., Guerin, S., Snyers, D., Kuntz,
P., and Theraulaz, G., “Routing in Telecommunications
Networks with ‘Smart’ Ant-Like Agents,” Working
Papers of the Satna Fe Institute 1998.
http://www.santafe.edu/sfi/publications/Working-
Papers/98-01-003.ps. 1998.

[5] Bonabeau, E., Dorigo, M., and Theraulaz, G., Swarm
Intelligence: From Natural to Artificial Systems. Oxford
University Press, New York 1999.

[6] Bonnet, P., Gehrke, J., Mayr, T., and Seshadri. P, Query
Processing in a Device Database System.
Ncstrl.cornell/TR99-1775. http://www. ncstrl.org, 1999.

[7] Brooks, R. R. and Iyengar, S., Multi-Sensor Fusion:
Fundamentals and Applications with Software. Prentice
Hall PTR, Upper Saddle River, NJ. 1998.

[8] Brooks, R.R., et al. “Reactive Sensor Networks: Mobile
Code Support for Autonomous Sensor Networks,”
Distributed Autonomous Robotic Systems DARS 2000.
Accepted for Publication. Springer Verlag. October 2000.

[9] Brueckner, S.A., Return from the Ant. Ph. D. dissertation.
Humboldt University, Berlin. 2000.

[10] Davalo, E. and Naim, P., Des Reseaux de Neurones.
Editions Eyrolles, Paris, 1989.

[11] Delorme, M., “An introduction to cellular automata,”
Cellular Automata: a Parallel Model. M. Delorme and J.
Mazoyer (eds). pp. 5-50. Kluwer Academic Publishers,
Dordrecht. 1999.

[12] Dorigo, M., Manniezzo, V. and Colorni, A., “The Ant
System: Optimization by a colony of cooperating agents,”
IEEE Transactions on SMC-Part B, vol. 26, no. 1, pp. 1-
13., 1996.

[13] Estrin, D., et al. Next Century Challenges: Scalable
Coordination in Sensor Networks. ACM MobiCom 99,
Seattle, WA, 1999.

[14] Free, J., Pheromones of Social Bees, Chapman and Hall,
London, 1987.

[15] Gaertner, J., Fundamentals of Fault-Tolerant Distributed
Computing in Asynchronous Environments. ACM
Computing Surveys, Vol. 31, no. 1, 1-26, 1999.

[16] Grassé, P.P., “La reconstuction du nid et les coordinations
inter-individuelles chez Bellicositermes Natalensis et
Cubitermes sp. La theorie de la stigmergie: essai
d’interpretation du comportement des termites
constructeurs,” Insect Sociology, vol. 6, pp. 41-84, 1959.

[17] H. Gutowitz, Cellular Automata: Theory and Experiment,
MIT Press, Cambridge, MA, 1991.

[18] Hopcroft, J.E., and Ullman, J.D., Introduction to
Automata Theory, Languages and Computation, Addison-
Wesley, Reading, MA. 1979.

[19] Minsky, M., The Society of Mind. Simon and Schuster,
New York. 1986.

[20] Neter, J.,Wasserman, W. and Kutner, M.H., Applied
Linear Regression Models, Irwin, Burr Ridge, IL, 1989.

[21] Langton, C.G., ed. Artificial Life: An Overview. MIT
Press. Cambridge, MA. 1996.

[22] Pandya, A.S. and Macy, R.B., Pattern recognition with
Neural Networks in C++. CRC Press, Boca Raton, FL.
1996.

[23] Parunak, H. and Brueckner, S.,"Synthetic Pheromones for
Distributed Motion Control," JFACC Symposium in
Advances Enterprise Control. November 1999.

[24] Resnick, M., "Learning about Life," Artificial Life. Vol. 1,
no 1-2, Spring 1994.

[25] Skirkevicius, A., "Some Characteristics of Insect
Pheromone Communication," Sensory Systems and
Communications in Arthropods. Pp. 55-61. Birkhaeuser
Verlag, Basel. 1990.

[26] Tennenhouse, D. L,. J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and Minden, G.J., A Survey of Active
Network Research. IEEE Communications Magazine, vol.
35, no. 1, 80-86, 1997.

[27] Wolfram, S., Cellular Automata and Complexity.
Addison-Wesley. Reading, MA. 1994.

Performance Self-Assessment by and for Regulation
in Autonomous Agents

Elpida S. Tzafestas
Institute of Communication and Computer Systems
Electrical and Computer Engineering Department

National Technical University of Athens
Zographou Campus, Athens 15773, GREECE.

brensham@softlab.ece.ntua.gr

ABSTRACT

We are studying the problem of connecting intelligence to performance
in the context of autonomous agents with very limited capabilities,
where performance is suspected to include very few parameters and be
easier to quantify than in more complex cases. We are reviewing and
comparing three behavioral models that solve three typical autonomous
agent problems, the explorer robot [1][2], the food-collector ant [3] and
the cooperative tit-for-tat agent [4]. In all three cases and despite the
apparent differences between them, we have defined a single problem-
dependent performance measure and, on that basis, we have found that
the most intelligent among several alternative models, i.e., the one that
to the eyes of an observer achieves better performance, is a self-
regulatory model involving a two-level regulatory process and an
internal variable representing the state of the problem-solving process,
thus self-assessing recent performance. The power of the agent lies in
the second level and regulation mechanism, that is problem-dependent,
and that has been shown to achieve the highest performance among
many alternative models in all three problems. The whole design thus
allows the agent to assess its actual performance and correct its
behavior by modifying accordingly the first-level regulation rates, or
equivalently by adapting the first level regulation law. From a
symmetrical point of view, the agent may also be thought of as
predicting the future state of the environment and adapting accordingly.
The self-regulatory process appears therefore as both the means to
effective performance assessment and the low-level prerequisite to
enhanced intelligence.

1. INTRODUCTION :
FUNDAMENTAL CONCEPTS

We are studying the problem of connecting intelligence to
performance in the context of autonomous agents with very
limited capabilities, where performance is suspected to include
very few parameters and be easier to quantify than in more
complex cases. By definition, the bottom-up study of
intelligence relies on two axioms, evolution and interaction. The
axiom of evolution states that higher forms of intelligence
appear as a result of an evolutionary process that proceeds from

simpler to more complex forms. Complex intelligence thus
containts and requires antecedent simpler intelligence. On the
other hand, intelligence has no absolute value, but depends on
and is the result of dynamic interaction with a changing world.
From an evaluation point of view, intelligence is not a well-
defined nor a well-specified property, but it depends on an
observer’s point of view, or as Brooks [5] says “intelligence is in
the eye of the observer”. An agent demonstrating intelligence
through dynamic interaction with a changing world has to be
responsive to its environment and adaptive to a range of
unpredicted events and situations. For the sake of enhanced
stability, adaptivity methods should better be constructed or
“controlled” by the agent itself. On the other hand, we, as
designers of autonomous agents, are seeking universal design
laws that will make our job easier in the long term. To this end,
we are investigating a number of classical autonomous agents
problems in an attempt to identify common design solutions, that
is design solutions that share design principles.

In what follows, we are reviewing and comparing three
behavioral models that solve three typical autonomous agent
problems, the explorer robot [1][2], the food-collector ant [3]
and the cooperative tit-for-tat agent [4]. In all three cases and
despite the apparent differences between them, we have defined
a single problem-dependent performance measure and, on that
basis, we have found that the most intelligent among several
alternative models, i.e., the one that to the eyes of an observer
achieves better performance, is a self-regulatory model
involving two regulatory processes and an internal variable
representing the state of the problem-solving process, thus self-
assessing recent performance.

The crucial internal agent variable has to be regulated
within bounds. The goal of the agent is to either bring it to a
limit (say 0) or prevent it from reaching the extremes. This
design step depends on the definition of a quantitative
environment ïr problem state, that will be next used as a metric

to evaluate different design alternatives.
Regulation occurs using positive feedback, so that the

agent's variable follows the tendency of the external world that it

tries to represent, although the value of the variable almost never
coincides with the truth, but rather it maintains a representational
distance from it. At a second or meta level, another regulation
process takes place that regulates the rates of the first level using
negative feedback. The power of the agent lies precisely in the
second level and regulation mechanism, that is problem-
dependent, and that has been shown to achieve the highest
performance among many alternative models (including the one
without meta-regulation) in all three problems.

The whole design thus allows the agent to assess its actual
performance and correct its behavior by modifying accordingly
the first-level regulation rates, or equivalently by adapting the
first level regulation law. From a symmetrical point of view, the
agent may also be thought of as predicting the future state of the
environment and adapting accordingly, because conceptually the
negative regulation law is the following:

If (the world diverges from the agent's
representation of it)

then (in the future) adapt so as to get
closer to the world,

else (in the future) adapt so as to amplify
differences from the world.

As a conclusion, the three case studies show that when an
autonomous agent problem may be formulated as a regulation
problem, the most intelligent alternative model, i.e. the one
achieving highest performance, is one that continuously assesses
its own performance and regulates its internal parameters
accordingly. Therefore, in these cases intelligence appears as the
result of low level self-evaluation and regulation.

2. CASE STUDY I : EXPLORER AGENTS

2.1.The Problem

A typical problem encountered in the behavior-based robotics
literature is that of exploration : a set of agents (robots) lands on
a planet with the mission to explore its surface for samples of
minerals having certain properties. The robots arrive in a
spaceship that serves as the planetary base in the course of the
mission. The mission is accomplished when the whole surface
contained within a certain distance from the base is explored,
i.e., when the agents have “swept” the whole area and exhausted
the sources of interest (cf. for instance [6][7]). The agents are
supposed to return to their base once their mission is
accomplished.

The exploration problem has been traditionally tackled
from a “functional” point of view : “How does one or more
agents sweep a delimited area to exhaust the sources of
interest ?”. The answer to this question is a control system, an
architecture, that allows an agent to navigate, perceive, detect
minerals etc., in order to sweep the area in question. A solution

such as those encountered in the literature (for instance [8]) that
comprises a random component and even without spatial
reasoning or learning, statistically ensures the coverage of the
interest field and the exhaustion of the mineral sources.

However, from a more “cognitive” point of view, this
functionality alone does not respond to the crucial question :
“How do the agents know that they have swept the whole area,
or that they have accomplished their mission ?”. In order to
answer to that question, we have to reformulate the description
of the sweeping task, in a way so as to include an expression,
analytical or other, that represents the termination criterion, that
is the exhaustion of the mineral sources. To this end, it is
sufficient to define an environmental variable, the density of
mineral sources, which characterizes the state of the explored
area at any moment. In what follows, this density will be
denoted as pw. The explorer-sweeper agent’s goal becomes
therefore to bring the value of that variable to 0. We will see that
an agent having a representation of that variable constitutes a
simple solution to this description problem.

Lastly, we seek an agent model that would “optimize”
performance, i.e. that would allow an agent to accomplish its
mission as fast as possible.

In our simulations, the world under exploration is defined
as a square around the central base : the size of the world is
therefore the length of the square’s edge (the results reported
have been obtained in a 25x25 world). The agent’s basic control
system, as well as the simulation details, is given in [1][2]. We
are analyzing next the single agent case, whereas the multiple
agents case is studied in [1][2].

2.2.The Solution : Reformulation of the Problem

We come now to the second question : “How does the agent
know it has swept the whole area in order to return to the
base ?”. It needs a way to detect the degree of task completion
or else a termination criterion (sweeping completed). The only
parameter of the task that can be useful to the development of a
termination criterion is the source density in the world pw(t). If
the agent knew in advance its initial value pw(0), we could define
as termination criterion a formula such as {pw(0) * sqr(r)
samples have been collected} (where r is the size of the square’s
edge, here 25). However, this criterion is not robust because if a
sample is not detected, the agent will never terminate (on the
other hand, we could certainly allow ourselves to miss a couple
of samples).

A simple solution to this problem is to estimate
continuously the value of pw(t) and, given that it falls to 0 as a
side effect of the agent’s activity, take as a termination criterion
pw(0)=0. Estimation of the value of pw(t) involves then a
representational variable which is local to the agent (pa(t)) and

may be done through a simple formula of proportional
adaptation :

Representational variable : p a(t)
Proportional adaptation (window w, rate r) :
pa(t) = p a(t-w) + diff * r
diff = p comp - p a(t-w)
pcomp = number of picked samples / number of

moves (during the adaptation window)
Termination criterion :

pa(t) < e p

where e p is a small threshold (here,
ep=0.001)

The pcomp is the agent’s estimate of pw as computed during the
adaptation window and the proportional law ensures that the
estimate’s update does not take place too quickly. This
representation/adaptation system shows the advantage of
robustness in front of perturbations/manipulations such as
reinitialization of pw(t) during sweeping. Figure 1 illustrates the
coevolution of the two variables pw(t) and pa(t). As is shown in
the figure, the representational variable allows the agent to
always solve its termination problem without ever taking the
real value of the variable it represents (except a crossing point).
Both variables fall progressively to 0 without ever taking the
same value — we could say that pa(t) “follows” pw(t). Actually,
the rapid rise of pa(t) in the beginning of the sweeping phase is
due to the presence of a sensor of distant samples that makes the
agent head toward the mineral sources minimizing its erratic
behavior in a way that most of the visited places contain
samples. The value of pa(t) falls then because the value of pw(t)
decreases as a side-effect of the agent’s activity who finds less
and less samples.

2.3.On Efficiency : Meta-Regulation

Next, we proceeded to study the relation between the adaptation
system’s w and r parameters and the initial world value pw(0).
The system has been simulated for several values of w and r in
several initial world densities. The simulation results for three
sets of adaptation parameters (quick, medium or slow
adaptation) in a medium initial world density are given in fig. 1.

The quick adaptation is more operational than the medium
one, which is in turn more operational than the slow one (always
according to the task duration criterion). However, the quicker
the adaptation, more fluctuations it shows, and the slower the
adaptation, more delays it shows. Furthermore, the same
parameter setting gives different results in different world
densities : the difference in the results is reflected on the shape
of the curves (for more curves, refer to [1][2]). More
particularly, the agent’s response to different perturbations (the
shape of the curve of pa(t)) differs according to the boundary
condition (pw(0)) : for the same parameter setting, the agent
finishes its task more or less quickly according to the value of
pw(0), that is the duration of the interval between the moment of

picking of the last sample and the definitive return of the agent
to the base is very variable. It seems therefore that to ensure the
agent’s operationality in different worlds, we need to find a
means to combine the operational advantages of quick
adaptation with the advantages of slow adaptation as far as curve
regularity is concerned.

Figure 1. Performance of the agent for different
parameter settings in a medium initial world density,
pw(0)=0.5 (pa(0)=0.15), t1=1437, t2=3278, t3=6821.
First part (quick adaptation) : w=15, r=0.3, dt1=1437.
Second part (medium adaptation) : w=30, r=0.2,
dt2=1841.
Third part (slow adaptation) : w=45, r=0.1, dt3=3543.

More precisely, we need a quick adaptation near the end (to
terminate quickly), but a slow adaptation during picking (to
avoid fluctuations). We have then to find a way to stabilize to
the right parameter setting on-line. Otherwise stated, we need a
meta-adaptation system.

Meta-adaptation has to affect the w and r parameters in a
way that adaptation becomes quicker when pest is sufficiently
close to pa(t) and slower when it is far from it. This meta-
adaptation law translates the fact that the world is more reliable
when it is not much different from the agent’s idea about it,
otherwise it should not be taken too seriously.

Meta-adaptation :
If |diff| (= |p comp-p a(t-w)|) £ f p,
then quicker adaptation

r ® r max, w ® w min

(r = r + r r * (r max-r), w = w + r w * (w min -w))
otherwise slower adaptation

r ® r min , w ® w max

(r = r + r r * (r min -r), w = w + r w * (w max-w))
Figure 2 gives the results of applying the meta-adaptation

system in three initial world densities ; as is shown in the figure,
the agent’s response (the shape of the curve) is the same for all
three exemplary densities, or else the residue of mission duration
after picking the last sample is approximately the same in all
three cases.

We have shown in [1][2] that the operationality of the agent
with the meta-regulation law does not depend qualitatively on
the values of wmin, wmax, rmin, rmax, rw and rr. Furthermore, the
initial condition (pa(0)) plays no role either.

Figure 2. Performance of the agent with a meta-
adaptation system for three initial world densities, low
(pw(0)=0.1), medium (pw(0)=0.1) and high (pw(0)=0.9)
(pa(0)=0.15). dt1=897, dt2=1663, dt3=2211 (t1=897,
t2=2560, t3=4771). (fp=0.1, wmin=15, wmax=40, rmin=0.15,
rmax=0.3, rr=rw=0.2)

3. CASE STUDY II : TRAIL-MAKING ANTS

3.1.The Problem

In another variant of the previous problem ([8][9][10]) there are
a few large sources distributed in the world. The solution in this
case consists in allowing a robot to lay down trails or “crumbs”
while carrying a source sample to the home base, that another
robot or itself may follow to arrive to the source quickly. A
different version of the problem considers that trails laid down
by the robots evaporate slowly, in the same way as pheromone
quantities laid down by real ants in the physical world ([11]).

The first complete solution has been given in [10], where a
number of increasingly complex and increasingly satisfactory
solutions have been analyzed. The Tom Thumb robot is able to
successfully build, reinforce and correctly use trails from the
home base to the source, while the Docker robot [10] uses an
additional mechanism of sample “theft” from neighbors, which
allows robots to build chains resembling harbor Dockers. The
motivation for our work has been our feeling that the Tom
Thumb robot as defined is not stable because it assumes
unbounded numbers of “crumbs”, which is not physically
possible, and which would show in a real robotic
implementation. A detailed presentation of what follows may be
found in [3].

The Tom Thumb robot’s behavioral diagram as described
in [10] is as follows :

If (carrying samples)
If (back home) lay down samples
Else {go home, lay down 2 crumbs}

Else
If (found samples) pick up samples
Else

If (crumb or stimulus sensed) (*)
{follow stimulus, pick up 1 crumb}

Else move randomly

(*) In the Docker robot, the condition
(crumb or stimulus sensed) is replaced
by (crumb or stimulus or loaded robot
sensed).

The Tom Thumb robot lays down two crumbs while homing,
and picks up one crumb while following crumbs or stimuli.
Unless otherwise stated, all simulations reported below use a
30x30 grid world with a large source at one of the corners and a
population of 10 robots starting with 50 crumbs each. Robots
may sense a sample or crumb from a distance of up to 3 grid
cells.

We have simulated the behavior of the system as is, by
measuring the quantities of crumbs deposited in the world or
owned by individual agents. As was expected, the quantities of
crumbs owned by robots generally fall below zero, while the
quantity of crumbs deposited in the world may rise without limit.
The exact values of these quantities depend on the problem
parameters (distance from source to home base, number of
robots and source size) that define the expected number of robot
trips source-base necessary to complete the task.

3.2.The Solution : Reformulation of the Problem

An apparent question arising at this point is, “what if we just
constrain robot behavior so as not to lay down crumbs when it
does not have any ? aren’t crumbs deposited so far enough ?”
We have been able to see in several experiments that, first,
depending on the problem parameters, the total quantity of
crumbs might not be sufficient, in which case the path to the
source will be disconnected, and, second, when it is sufficient —
 for instance if we start the above experiment with 1000 crumbs
per agent — the total number of crumbs deposited in the world
may rise tremendously. This last condition generates an
important problem : the robots will continue being attracted for a
long time to an empty source, that is, the surplus crumbs will be
misleading. This observation brings us to the actual formulation
of the above trailing problem :

We are seeking a laydown-pickup mechanism such that a
trail to a source is built quickly and reinforced while the
source exists and vanishes shortly after the source is
exhausted.

The problem of agent crumb exhaustion lends itself to a
simple solution. Every time a robot needs to lay down or pick up
crumbs, it should do it in a way so as to preserve its own
quantity of crumbs within some desired bounds crumbsmin and
crumbsmax, by using the following laws :

For laydown crumbs(t+1) = crumbs(t) +
r l * (crumbs min – crumbs(t))

For pickup crumbs(t+1) = crumbs(t) +
r p * (crumbs max – crumbs(t))

This simple regulation mechanism ensures that no agent will
ever run out of crumbs completely. However, the absolute (real-

valued) quantity of crumbs deposited or collected at each cycle
will depend on the state of the agent : an agent with many
crumbs will lay down more and pick up less than an agent with
just a few crumbs remaining. This arrangement allows for trails
to be built rapidly (because agents in the beginning tend to lay
down large quantities of crumbs) and to vanish quickly (because
agents toward the end of the task have statistically only a few
crumbs, so they tend to pick up large quantities of crumbs). In
what follows it will be assumed that crumbsmin=10 and
crumbsmax = 100, for all agents.

3.3.On efficiency : Meta-Regulation

A large laydown rate will be beneficial in the start and middle of
the task, when the agents would like to build and reinforce a trail
quickly, while a large pickup rate would be beneficial toward the
end of the task, when the agents would like to destroy the trail to
the exhausted source as quickly as possible. While a given
parameter setting would be more desirable than another one in a
particular context, our goal as designers should be to ensure the
better behavior globally, i.e., to ensure that the system will
“discover” or identify the proper parameter setting in each
situation.

Consequently, what we really want is not a particular
parameter setting, but a mechanism that will allow a robot to lay
down more and pick up less crumbs at the beginning of the task
(so as to build and reinforce the path) and vice versa toward the
end (so as to destroy it quickly). To this end, a measure of the
state of the task must be available. The only such measure that a
robot may have is the number of the crumbs in the world.
However, since this quantity cannot be directly perceivable, we
have used an estimate of it, simply the number of crumbs at the
current position of the robot. This estimate is used as follows :

For laydown
If crumbs(t) >= world_crumbs_estimate

r l (t+1) = r l (t) + r rl * (r lmax – r l (t))
else r l (t+1) = r l (t) + r rl * (r lmin – r l (t))
For pickup
If crumbs(t) >= world_crumbs_estimate

r p(t+1) = r p(t) + r rp * (r pmin – r p(t))
else r p(t+1) = r p(t) + r rp * (r pmax – r p(t))

As is obvious from the formulae, the rate of crumb laying
increases when the robot owns more crumbs than may be found
in its current position and decreases otherwise. Inversely, the
rate of crumb picking increases when the robot owns less
crumbs than may be found in its current position and decreases
otherwise.

Figure 3 gives a typical result of the application of the
above model. Surprisingly enough, the self-regulation of the
laydown and pickup rates not just does change the qualitative
behavior of the agents (the quantity of crumbs in the world rises
quickly to a fairly high value, stays close to it during the task,

and falls back quickly to zero when the source is exhausted,
while showing far less fluctuations than in the previous case),
but it improves results quantitatively as well : in all runs,
including the one depicted, the duration of the task has been
shorter than with the non-regulated model.

Figure 3. Quantity of crumbs owned by a meta-
regulated agent in a typical run. It fluctuats between
the upper and lower limits.

4. CASE STUDY III :
ADAPTIVE TIT FOR TAT AGENTS

4.1.The Problem

A major issue on the intersection of artificial life and theoretical
biology is cooperative behavior between selfish agents. The
cooperation problem states that each agent has a strong personal
incentive to defect, while the joint best behavior would be to
cooperate. This problem is traditionally modeled as a special
two-party game, the Iterated Prisoner’s Dilemma (IPD).

At each cycle of a long interaction process, the agents play
the Prisoner’s Dilemma. Each of the two may either cooperate
(C) or defect (D) and is assigned a payoff defined by the
following table.

Agent Opponent Payoff
C C 3 (= Reward)
C D 0 (= Sucker)
D C 5 (= Temptation)
D D 1 (= Punishment)

Usual experiments with IPD strategies are either tournaments or
ecological experiments. In tournaments, each strategy plays
against all others and scores are summed in the end. In
ecological experiments, populations of IPD strategies play in
tournaments and successive generations retain the best strategies
in proportions analogous to their score sums.

The first notable behavior for the IPD designed and studied
by Axelrod [12] is the Tit For Tat behavior (TFT, in short) :

Start by cooperating,
From there on return the opponent’s previous move.

This behavior has achieved the highest scores in early
tournaments and has been found to be fairly stable in ecological
settings.

The best designed behavior found so far in the literature is
GRADUAL [13] which manages to achieve the highest scores
against virtually all other designed behaviors. This behavior
starts by cooperating and then plays Tit For Tat, except that it
does not defect just once to an opponent’s defection. Instead, it
responds by playing blindly (nxD)CC, where n is the opponent’s
number of past defections. That is, GRADUAL responds with
DCC to the first opponent’s defection, DDCC to the second, etc.
The justification given for the performance of this behavior is
that it punishes the opponent more and more, as necessary, and
then calms him down with two successive cooperations.

The motivation for our work has been our conviction that a
behavior comparable to GRADUAL could be found, that has not
permanent, irreversible memory. Instead, we are after a more
adaptive tit-for-tat based model that would demonstrate
behavioral gradualness and possess the potential for stability in
front of changing worlds (opponent replacement etc.).
Before proceeding, let us examine the high scores that
GRADUAL obtains against other behaviors. Designed behaviors
found in the literature usually fall in one of three categories :
· Behaviors that use feedback from the game, usually

cooperative behaviors unless the opponent defects, in which
case they use a retaliating policy (tft, grim, gradual, etc.).

· Behaviors that are essentially cooperative and retaliating,
but start suspiciously by playing a few times D in the
beginning, so as to probe their opponent’s behavior and
decide on what they have to do next. For example,
suspicious tft (STFT) and the “prober” behavior of [13].

· Behaviors that are clearly irrational, because they don’t use
any feedback from the game. For example, the random
behavior and all blind periodic behaviors such as CCD,
DDC etc.

A behavior will maximize its score, if it is able to converge to
cooperation with all behaviors of the first two categories and
converge to defection against behaviors of the third category.
Steady defection against periodic behaviors is necessary in order
to achieve the highest possible score (see [4], for details).

The GRADUAL behavior fulfills both of the above
specifications, because it responds with two consecutive C’s
after a series of defections, giving the chance to STFT or prober
behaviors to revert to cooperation, and converges to ALLD
against irrational behaviors. A solution to the permanent
memory problem has to demonstrate the same property.

4.2.The solution : Reformulation of the Problem

The adaptive behavior that we are seeking should be essentially
tit-for-tat. Moreover, it should demonstrate fewer oscillations

between C and D. To this end, it should have an estimate of the
opponent’s behavior, whether cooperative or defecting, and
react to it in a tit-for-tat manner. The estimate will be
continuously updated throughout the interaction with the
opponent. The above may be modeled with the aid of a
continuous variable, the world’s image, ranging from 0 (total
defection) to 1 (total cooperation). Intermediate values will
represent degrees of cooperation and defection. The adaptive tit-
for-tat model can then be formulated as a simple linear model :

Adaptive tit-for-tat
If (opponent played C in the last cycle)

then
world = world + r*(1-world), r is the

adaptation rate
else

world = world + r*(0-world)
If (world >= 0.5) play C, else play D

The usual tit-for-tat model corresponds to the case of r=1
(immediate convergence to the opponent’s current move).
Clearly, the use of fairly small r’s will allow more gradual
behavior and will tend to be more robust to perturbations.

Now, let us simulate the behavior of the adaptive tit-for-tat
agent against all three types of behaviors described earlier.
· For initially cooperative behaviors with feedback and a

retaliation policy, the model cooperates steadily and
converges quickly to total cooperation.

· For suspicious or prober behaviors, the model plays exactly
like tit-for-tat, while the value of the world variable
oscillates around the critical value of 0.5 (see figure 4
against suspicious tft).

· For periodic behaviors, the value of the world variable
converges quickly to oscillations around the characteristic
value of “number_of_C’s/number_of_D’s” in the
opponent’s period.

Figure 4. Interaction of adaptive tit-for-tat with
suspicious tit-for-tat (r=0.2, world(0)=0.5).

4.3.On Efficiency : Meta-Regulation

It can be seen that the previous version of the model suffers from
manipulation of the world variable by the opponent. This shows

as stabilization of the agent to an oscillatory behavior (as is the
case against stft) or a steady cooperative behavior against
irrational agents (as is the case against CCD). To bypass this
problem, we exploited our observation that different rates for
cooperation and defection (rc and rd, respectively) yield different
results. More specifically, we observed that the adaptive tit-for-
tat agent manages to get opponents such as stft or the prober to
cooperate if rc>rd, while it manages to fall to steady defection
against periodic behaviors if rc<rd.

Thus, what we need at this point is a method for the
adaptive tit-for-tat agent to discover whether the opponent uses a
retaliating behavior or is just irrational and to adopt accordingly
the proper rate setting. We have designed and examined several
such variants for estimating the opponent’s irrationality and we
have finally found the following rule :

Throughout an observation window, record how
many times (n) the agent’s move has
coincided with the opponent’s move. At
regular intervals (every “window” steps)
adapt the rates as follows :
If (n>threshold) then

r c = r min , r d = r max

else r c = r max, r d = r min

The rule may be translated as :
If (the world is cooperative enough)* then

r c = r min , r d = r max

else r c = r max, r d = r min

(*) recall that “my move = opponent’s move”
is the so-called pavlovian criterion of
cooperation ([14])

Note that the agent drops its cooperation rate when the world is
assumed cooperative, and increases it otherwise, that is, it uses
negative feedback at the rate regulation level.

Figure 5. Interaction of the meta-regulated adaptive
tit-for-tat agent with suspicious tit-for-tat (rc(0)=0.2,
rd(0)=0.2, rmax=0.3, rmin=0.1, world(0)=0.5,
window=10, threshold=2). Compare with figure 4.
We have shown in simulations that the adaptive tit-for-tat

agent with the meta-regulation mechanism converges to the
proper behavior against both retaliating and irrational agents.

For example, figure 5 gives the behavior of the meta-regulated
adaptive tit-for-tat agent against STFT.

Finally, the adaptive agent manages to differentiate
between a retaliating agent and an irrational one that has initially
the same behavior. The agent first assumes that the opponent is
retaliating and becomes increasingly cooperative, but soon finds
out that the opponent is actually irrational and reverts to
defection.

5. DISCUSSION :
ELABORATING THE CONCEPTS

In all three case studies, we have shown that the agent’s
behavior is based on a critical variable that drives its motivation
to act. This variable is coupled with the environment through the
agent’s behavior. By regulating its own variable, an agent tries
to regulate the corresponding world variable. Furthermore, this
variable has cognitive value, since it represents the agent’s idea
about the state of the environment. Seen this way, the agent may
be thought of as trying to approach or approximate the world
variable, i.e., as trying to adapt to its environment. The regulated
variables appear to be critical for an agent’s survival or
operationality, and correspond to what Ashby [15] called
essential variables.

The operationality of the behavior is ensured through an
additional self-regulation mechanism acting on the adaptation
rates. This is an important observation, since it is compatible
with the dynamical approach to cognition [16], stating that the
most important factor in cognitive mechanisms is the nature of
dynamics involved. Mechanisms like the ones developed here
may be also regarded as a first step toward the realization of
autopoietic systems :

“… an autopoietic system is a homeostat … the critical
variable is the system’s own organization ...” ([17], p. 66)

In sum, we have shown that self-assessment of performance by
an agent is done with the aid of a double regulatory process and
it allows it to become more operational in its work. This is in
line with classical control theory, where regulatory mechanisms
are used as the basis of behavior [18]. Inversely, similar
regulatory processes may be designed for other problems,
provided that the appropriate performance measure (or cognitive
variable) and its assessment model are given or may be
identified. In this sense, the long term perspective of this work is
to build a regulation theory for reactive autonomous agents. To
this end, a number of issues have to be investigated :
· How do we identify the critical cognitive variable in each

case ? Equivalently, how do we formulate regulation in each
case ?

· How many first level rates are necessary ? Equivalently,
how many independent regulation processes are there ?

Recall that the explorer agent has one such rate, whereas
both the trail-making agent and the adaptive tit-for-tat agent
have two of them.

· Which is the meta-regulation criterion ? Note that in all
three cases studied this criterion is purely qualitative and
problem-dependent. Equivalently, this issue translates to
“How can we observe and qualify a regulatory process ?”.

· What is the nature of the meta-regulation dynamics ? A few
initial experiments show that most probably a “bang-bang”
dynamics (high-low value) is enough, because what counts
is the relation between two rates rather than their absolute
values.

· Finally, what is the role and value of “behavior in the
empty” (without perturbation) ? This behavior is purely
agent-specific and may differ among different agents, due to
different parameter settings, defining thus the individual
“character” of an agent. Initial experiments have shown that
the behavior in the empty allows some limited prediction to
be made.

As a general conclusion, the answers to questions such as the
above could teach us a lesson on the power and potential of
regulation mechanisms for apparently qualitative problems.
They could also deepen our understanding of the scope and
limits of such mechanisms amd prompt us to problems of
immediately higher complexity, where regulation would not be
enough and why this is so.

6. REFERENCES

[1] Tzafestas, E., Vers une systémique des agents
autonomes : Des cellules, des motivations et des perturbations,
Ph.D. diss., Univ. Pierre et Marie Curie, Paris, 1995.

[2] Tzafestas, E., “Regulation Problems in Explorer Agents”,
submitted.

[3] Tzafestas, E., “Tom Thumb Robots Revisited : Self-
Regulation as the Basis of Behavior”, Proceedings Artificial Life
VI, San Diego, CA, June 1998.

[4] Tzafestas, E., “Toward Adaptive Cooperative Behavior”,
Proceedings Simulation of Adaptive Behavior 2000, Paris,
France.

[5] Brooks, R.A., “Elephants don’t play chess”, in P. Maes
(ed.), Designing Autonomous Agents, MIT Bradford Press,
1991.

[6] Brooks, R.A. and Flynn, A.M., “A robot being”, Robots
and Biological Systems : Towards a new Bionics ? (P. Dario,
G. Sandini and P. Aebischer), 1989, pp. 679-701.

[7] Beckers, R., Holland O.E. and Deneubourg, J.-L., “From
local actions to global tasks: Stigmergy and collective robotics”,
Proceedings Artificial Life IV (R. Brooks and P. Maes, Eds.),
MIT Press, Cambridge, MA, 1994, 181-189.

[8] Mataric, M., “Designing emergent behaviors : From local
interactions to collective intelligence”, Proceedings Simulation
of Adaptive Behavior 1992, 432-441.

[9] Steels, L., “Towards a theory of emergent functionality”,
Proceedings Simulation of Adaptive Behavior 1990, 451-461.

[10] Drogoul, A. and Ferber, J., “From Tom Thumb to the
Dockers : Some experiments with foraging robots”, Proceedings
Simulation of Adaptive Behavior 1992, 451-459.

[11] Deneubourg, J.-L., Aron, S., Goss, S. and Pasteels, J.M.,
“The self-organizing exploratory pattern of the Argentine Ant”,
Journal of Insect Behavior 3(1990):159-168.

[12] Axelrod, R., The evolution of cooperation. Basic Books,
1984.

[13] Beaufils, B., Delahaye, J.-P., and Mathieu, P., “Our
meeting with gradual: A good strategy for the iterated prisoner’s
dilemma”, Proceedings Artificial Life V, Nara, Japan, 1996.

[14] Nowak, M., and Sigmund, K., “A strategy of win-stay,
lose-shift that outperforms tit-for-tat in the prisoner’s dilemma
game”, Nature 364(1993):56-58.

[15] Ashby, W.R., Design for a brain - The origin of adaptive
behaviour. 2nd revised edition, Chapman & Hall, 1960.

[16] van Gelder, T., and Port, R., “It’s about time : An
overview of the dynamical approach to cognition”, in Mind as
Motion : Explorations in the dynamics of cognition, by T. van
Gelder and R. Port, Cambridge, Mass.: MIT Press, 1995.

[17] Maturana, H.R., and Varela, F. (1980). Autopoiesis and
cognition — The realization of the living, Dordrecht/ Boston, D.
Reidel Publishing.

[18] Slotine, J.-J.E. (1994). Stability in adaptation and
learning, From animals to animats 3, Proceedings of the 3rd
International Conference on Simulation of Adaptive Behavior,
MIT Press, pp. 30-34.

On Measuring Intelligence in Multi Agent Systems

Siva Perraju Tolety
GTE Laboratories
40 Sylvan Road,

Waltham MA 02451 USA
toletys@acm.org

Garimella Uma

Abstract

Intelligent behavior means doing the right thing
[1]. Due to the bounded rationality of agents it is
not always possible to do the right thing. Hence
intelligence implies doing the best possible given
the resources an agent or a multi agent system
has. So, a measure of intelligence should reflect
an evaluation of the process by which the agent
or the multi agent systems arrive at exhibiting
intelligent behavior. In multi agent systems,
intelligent behavior is emergent in nature rather
than additive. So, measures of intelligence
should attempt to estimate the net resultant
behavior rather than the individual fine grained
reasoning processes of individual agents.
Intelligent quotient measures for the human mind
attempt to arrive at a single number based on a
battery of tests. This number is a reflection of the
individual’s standing in his or her group. In this
paper we attempt to present our ideas about
arriving at such measures for multi agent
systems.

1. Introduction
Intelligence is expected to allow an agent to
do the right thing. The level of intelligence
is reflected in the appropriateness of the
actions undertaken by an agent in the given
circumstances. Measures of intelligence
have been used in the human society for a
variety of purposes. These uses range from
efforts to identify deficiencies in individuals
and help them improve in these areas to
efforts to rank people according to their
capabilities in a given area.

Research in agents and multi agent systems
is maturing and systems are being deployed
in real world settings. Consequently, users

of these systems would like to evaluate the
system, understand its advantages and
deficiencies and improve upon the same.
Also if multiple intelligent systems purport
to accomplish identical or similar tasks, the
users of these systems will have a natural
interest in making a comparison of the
different systems. Similar needs in the
human society gave birth to different
performance measures. The measures are
usually referred using the generic term
Intelligence Quotient (IQ). These varied
measures are based on differing views of
intelligence. In Section 2, we briefly outline
the differing views of human intelligence,
and how these views lead to different
perspectives of IQ measurements. In Section
3, we outline different multi agent
architectures and highlight various aspects
of these architectures that can be measured.
In Section 4, we outline a possible measure
for multi agent architecture developed for
problem solving activities in real time
domains. Section 5 presents the conclusions.

2. Intelligence and its
Measurements in the Human
Society

Intelligence is an abstract concept and
reflects in some way the competencies and
skills an individual possess. Some of the
questions about intelligence include [2]:
• Is mental competence a single ability

applicable in a variety of settings? or

mailto:toletys@acm.org

• Is competence produced by specialized
abilities, which a person may or may
not possess independently?

If we can resolve this question about
intelligence, the next question what are the
metrics by which you can measures these
competencies. Do these measures reflect in
the every day problem solving ability of the
individual? The answers to these questions
depend to a large extent on the perspective;
one subscribes to, about intelligence. Two
popular views about intelligence are
• psychometric views and
• Cognitive-psychology view.

The psychometric view of intelligence
places emphasis on scores obtained in
carefully designed tests to evaluate specific
skills. This view gives rise to the popular
notion of intelligence quotient. Several
versions of intelligent quotients exist.
Usually these numbers are arrived by
performing factor analysis on scores
achieved on tests about different skills.
Thus IQ measures reflect the level of what
psychologists call crystallized intelligence
(Gc). Crystallized intelligence is the ability
to apply previously acquired problem
solving methods to the current problem.
Measures of crystallized intelligence
correlate strongly with another aspect of
intelligence viz. fluid intelligence (Gf).
Fluid intelligence is the ability to develop
techniques for solving problems that are
new and unusual from the problem solver’s
perspective.

The cognitive-psychology view is that
thinking is a process of creating mental
representation of the current problem,
retrieving information that appear relevant
and manipulating the representation in
order to obtain an answer [2]. This
definition encapsulates the concepts of Gc
and Gf. Forming a mental representation of
the problem is akin to fluid intelligence and
extraction of relevant information is similar
to crystallized intelligence. A variety of
tests based on the cognitive-psychology
view of intelligence are also available.

3. Intelligence in Agents and Multi
Agent Systems

Agent architectures reflect the underlying
problem solving processes. Agents can be
broadly classified as either reactive or
deliberative. Reactive agents are usually
preprogrammed to respond in particular
ways to various stimuli from the
environment. Agents with deliberative
architectures usually use some reasoning
process to arrive at a solution. Reflecting
upon the classification of intelligence
discussed in the earlier section, we can
assume that reactive agents depend on
crystallized intelligence while deliberative
agents depend on fluid intelligence. So,
psychometric based measures are
appropriate for reactive architectures, while
tests that try and evaluate the reasoning
processes are appropriate for deliberative
agents. Just as IQ tests target different
groups of the society, tests in the agent
world should also target specific agent sets.
For example we might design a test suite
that tries to evaluate spidering skills of
Internet spider agents.

The power of multi agent systems is in their
property of emergent behavior. Apart from
the domain knowledge, multi agent systems
possess some special features, which make
them very attractive. These are
• communication and
• agent interaction

Agent interaction is achieved in a variety of
ways. Coordination is the generic agent
interaction mechanism that helps agents in a
multi agent setting achieve their individual
and common goals. Coordination can be
achieved either through cooperative or
competitive mechanisms. Communication
protocols based on theories like speech acts
enable agents to exchange small by
semantically rich messages in aid of their
problem solving. In this perspective of
multi agent systems, the communication and

agent interaction aspects of the systems
seem to determine the intelligence or
performance1 of the system. Hence we
propose that any performance measure for
multi agent systems should in some way be
able to rank different systems along these
two dimensions. So, an IQ measure for multi
agent systems is a function of three separate
factors. They are
• domain knowledge(DK)
• individual agent reasoning capabilities

(ARC)
• communication (COMM) abilities and
• efficacy of agent interaction AI).

MIQ = f(DK,IARC, COMM, AI)

Since we are interested in evaluating multi
agent settings, we can ignore the factors that
can be attributed to individual agents viz.
DK and ARC. This implies we are assuming
that all agents are equally capable in a given
domain. This assumption though not suitable
for rigorous measurements, could however
be a good starting point. Hence

MIQ = f(COMM, AI)

4. Measuring intelligence /
performance in TRACE

TRACE (Task and Resource Allocation in a
Computational Economy) is a system of
multi agent systems designed to operate
under time constraints and load variations
[3,4]. TRACE approach to problem solving
is based on an adaptive organizational
policy. The TRACE system is market based
multi agent system. Tasks and resources are
allocated to different multi agent systems
based on their problem solving load and the
price they are willing to pay for the
resources. We assume that knowledge can

1 We assume that higher level of intelligence
results in better performance. Consequently, a
MAS which is better at a given set of tasks than
another MAS can be considered to be more
intelligent.

be transferred among agents and thus
domain knowledge plays no particular role
in the evaluation of the multi agent systems.

Intuitively, we know that the efficiency of a
player in a market is determined by how
efficiently the multi agent system trades its
funds for resources to aid in problem
solving activities. Different multi agents
systems in TRACE can adopt different
policies to decide on their problem solving
activities.

Now if we attempt to measure the
performance of multi agent systems with
different policies in the TRACE setting,
what are the attributes that can capture the
essence of the equations in the previous
section? Multi agent systems sign up or
commit for tasks and attempt to complete
them. In this process they undertake both
communication and agent interaction tasks.
These tasks are time bound and task
completion beyond a deadline is a wasted
problem solving activity. In order to
achieve maximum returns for the problem
solving activity, multi agent systems will
drop some tasks (decommit). The lower the
number of decommitments the better the
performance. The number of
decommitments reflects how much a given
system has overreached. It in turn reflects
on the shortcomings in its communication,
negotiation and problem solving abilities.
Thus in the case of the TRACE system we
feel that a normalized number of
decommitments is an accurate measure of
the performance of the multi agent systems.

We have implemented a prototype of the
TRACE system, in which it is possible to
introduce multi agent systems with different
problem solving abilities and processes. We
intend to formulate a simple problem to be
solved by the multi agent systems. We then
intend to measure the number of
decommitments made and determine if this
measure is a reasonably accurate measure
of the performance of the multi agent
system.

5. Conclusions
In this paper we made an attempt at trying
to understand the basis of intelligent
measures used in the human society.
Research in agent systems and multi agent
systems led to the development of
architectures that in some way try to mimic
the problem solving skills in human beings.
Thus the science of intelligent quotient
measurements can be applied to the domain
of intelligent agents and multi agent
systems. In market based agent systems, we
propose that the number of decommitments
made by an agent along with the resources
consumed is a measure of its ability. In
more cooperative settings different but
appropriate measures need to be designed.
We conclude that the measures need to be
designed by considering a family of agent
architectures. For example we feel that a
measure designed for a market based agent
system will be ill suited for a cooperative
multi agent system. We are currently
experimenting with a multi agent system
TRACE to understand the criteria for
measuring its performance.

References

1. S. Russel and E. Wefald, Do the Right
Thing, MIT Press, 1991

2. E Hunt, The Role of Intelligence in
Modern Society, American Scientist,
July- August 1995.

3. S Fatima, G Uma, T S Perraju, An
Adaptive Organizational Policy for
Multi Agent Systems, ICMAS 2000,
Boston USA. July 2000.

4. S Fatima, G Uma, “AASMAN” An
Adaptive Organizational Policy for a
society of Market based agents,
Sadhana, Academy Proceedings of
Engineering Sciences, Indian Academy
of Sciences, Vol 23, No. 4, pages 377-
392.

On the Development of Metrics for Multi-Robot Teams

within the ALLIANCE Architecture

Lynne E. Parker

Center for Engineering Science Advanced Research

Computer Science and Mathematics Division

Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6355

ABSTRACT

Quantitatively evaluating the e�ectiveness of software ar-
chitectures for multi-robot control is a challenging task.
Exacerbating the problem is the fact that architectures are
typically constructed to address di�erent design goals and
application domains. In the absence of benchmarks that
capture the variety of issues that arise in multi-robot co-
ordination and cooperation, the system developer can only
evaluate an architecture for its own qualities. In this article,
we summarize the metrics of evaluation that we utilized in
applying our ALLIANCE architecture [17] to eight di�er-
ent application domains for multi-robot team control. We
explore the implications of the metrics we have chosen and
o�er suggestions on future productive lines of research into
metrics for multi-robot control architectures.

Keywords: Multi-robot cooperation, metrics, AL-

LIANCE

1 Introduction

Research work in multi-robot systems has progressed sig-
ni�cantly in recent years. Issues that have been stud-
ied are diverse, and include task planning and control
[1, 17, 12]; biological inspirations [6, 7, 13]; motion coor-
dination [27, 2, 4]; localization, mapping, and exploration
[22, 21]; explicit and implicit communication [5, 9]; co-
operative object transport and manipulation [23, 25]; re-
con�gurable robotics [28, 24, 26]; and multi-robot learning
[11, 12, 10]. Demonstrations have been given of multi-robot
teams performing a variety of tasks, such object pushing,
foraging, cooperative tracking, traÆc control, surveillance,
formation-keeping, and so forth.
However, most of this research is very speci�c and illus-

trates only one or two basic concepts per project. Compar-
isons across di�erent methodologies are diÆcult and quanti-
tative evaluations of various multi-robot control algorithms
are scarce. While this is not unexpected for a �eld as new as
cooperative robotics, enough progress has been made that
we believe it is time to begin determining how we identify
and quantify the fundamental advantages and characteris-
tics of multi-robot systems. The characteristics most often

cited for motivating the use of multi-robot teams are as
follows:

� increased robustness and fault tolerance through re-
dundancy,

� a potential for decreased mission completion time
through parallelism,

� a possibility for decreased individual robot complexity
through heterogeneous robot teams, and

� an increased scope of application due to tasks that are
inherently distributed.

Other than direct measures of time, these characteris-
tics are hard to quantify, yet vital to enabling the �eld to
make objective comparisons and evaluations of competing
architectures. Thus, much research is needed in this area.

2 Background

Measuring the performance of intelligent systems in gen-
eral, and multi-robot systems in particular, is a much-
understudied topic. Some beginning work has been accom-
plished by Balch [3], who has developed metrics for mea-
suring multi-robot team diversity. However, little research
has addressed the general issues of cooperation that provide
guidelines for the quanti�cation and selection of the appro-
priate cooperative team for any given set of mission speci�-
cations. Such a characterization would be a signi�cant step
towards the commercialization of cooperative systems, as it
would facilitate the design of the appropriate cooperative
team for a given application. Issues of particular interest
in such a characterization include the following:

� Quantifying the overall system capability versus the
system complexity,

� Determining the appropriate distribution of capabili-
ties across robot team members for a given application,

� Ascertaining the most appropriate control strategy for
a given robot team applied to a given application so
as to maximize eÆciency, fault tolerance, reliability,
and/or exibility, and

� Determining tradeo�s in control strategies in terms of
desirable traits, such as eÆciency versus fault toler-
ance.

Examples of this type of research include [8], which de-
velops measures of e�ectiveness and system design consid-
erations for the generic area coverage application, and [14],
which compares the power of local versus global control laws
for a \Keeping Formation" case study. However, much more
work remains to be accomplished towards the development
of quantitative comparisons of alternative approaches to co-
operative team design. An understanding of the factors that
inuence the relative performances of various approaches to
cooperative control will enable not only an evaluation of ex-
isting methodologies, but will also aid in the design of new
cooperative control approaches.

Since addressing the issue of quantitative measurement
and system integration for the entire �eld of cooperative
robotics is extremely challenging, we have begun work in
this area by focusing on our experiences with the AL-
LIANCE architecture. We developed the ALLIANCE ar-
chitecture [17] to enable fault tolerant action selection in
multi-robot teams. The focus was on an approach that op-
erated successfully amidst a variety of uncertainties, such
as sensory and e�ector noise, robot failures, varying team
composition, and a dynamic environment. We have imple-
mented ALLIANCE in eight di�erent application domains
in the laboratory. This experience is the basis for our begin-
ning work in the development of general metrics and system
integration as it applies to the use of ALLIANCE.

3 Brief Overview of ALLIANCE

We developed the ALLIANCE architecture to enable fault
tolerant action selection in multi-robot teams. The focus
was on an approach that operated successfully amidst a va-
riety of uncertainties, such as sensory and e�ector noise,
robot failures, varying team composition, and a dynamic
environment. The ALLIANCE architecture, shown in Fig-
ure 1, is a behavior-based, distributed control technique.
Unlike typical behavior-based approaches, ALLIANCE de-
lineates several behavior sets that are either active as a
group or are hibernating. Each behavior set of a robot
corresponds to those levels of competence required to per-
form some high-level task-achieving function. Because of
the alternative goals that may be pursued by the robots, the
robots must have some means of selecting the appropriate
behavior set to activate. This action selection is controlled
through the use of motivational behaviors, each of which
controls the activation of one behavior set. Due to con-
icting goals, only one behavior set is active at any point
in time (implemented via cross-inhibition of behavior sets).
However, other lower-level competencies such as collision

Layer 0

Layer 1

Layer 2

Motivational
Behavior

Behavior
Set 0

Behavior
Set 1

Behavior
Set 2

Sensors

Actuators

Inter-Robot
Communi-

cation

cross-inhibition

The ALLIANCE Architecture

Motivational
Behavior

Motivational
Behavior

Figure 1: The ALLIANCE architecture for multi-robot co-
operation.

avoidance may be continually active regardless of the high-
level goal the robot is currently pursuing.

The motivational behavior mechanism is based upon the
use of two mathematically-modeled motivations within each
robot { impatience and acquiescence { to achieve adaptive
action selection. Using the current rates of impatience and
acquiescence, as well as sensory feedback and knowledge of
other team member activities, a motivational behavior com-
putes a level of activation for its corresponding behavior set.
Once the level of activation has crossed the threshold, the
corresponding behavior set is activated and the robot has
selected an action. The motivations of impatience and ac-
quiescence allow robots to take over tasks from other team
members (i.e., become impatient) if those team members
do not demonstrate their ability { through their e�ect on
the world { to accomplish those tasks. Similarly, they allow
a robot to give up its own current task (i.e., acquiesce) if
its sensory feedback indicates that adequate progress is not
being made to accomplish that task.

We have shown that this approach can guarantee, under
certain constraints, that the robot team will accomplish
their objectives [15]. We have implemented this approach
in a wide variety of applications in the laboratory on sev-
eral di�erent types of physical and simulated robot systems.
Figures 2 and 3 illustrate these di�erent implementations.
The implementations include the \mock" hazardous waste
cleanup [17], box pushing [20], janitorial service [16], bound-
ing overwatch [16], formation-keeping [14], cooperative ma-
nipulation [18], cooperative tracking of multiple moving tar-
gets [19], and cooperative production dozing. These imple-
mentations and results now give us the basis for studying
issues of metrics within this framework.

4 Evaluation of Metrics in AL-

LIANCE Applications

In [16], the ALLIANCE architecture was demonstrated to
have the important qualities of robustness, fault tolerance,
reliability, exibility, adaptivity, and coherence, which we
identi�ed as critical design requirements for a cooperative
multi-robot team architecture. These broad characteristics,
however, were determined based upon qualitative evalua-
tions of the various implementations we have performed.
Ideally, we would prefer to have more quantitative metrics
of evaluation for these higher-level team characteristics.
On a more application-speci�c level, we used several met-

rics to evaluate robot team performance within each of these
applications. Table 1 summarizes the metrics we used to
analyze the performance of multiple robot teams in eight
di�erent ALLIANCE implementations. In these applica-
tions, concrete indicators of mission success were used, such
as numbers of objects moved, distance traveled, or number
of targets within view. Improved mission quality was based
upon the time taken to achieve these indicators. This is nat-
ural, since a primary bene�t of multiple robot teams is using
parallelism to achieve mission speedup. In these implemen-
tations, no single metric was found to be most useful. The
need for a variety of metrics suggests that system perfor-
mance measures are application-dependent. These exam-
ples also illustrate that, for typical applications, the most
important issues are whether and how well the robot team
completes its mission.
By focusing on application-speci�c metrics, however, the

broader-perspective qualities of robustness, fault tolerance,
adaptivity, etc., are not made explicit. Instead, these char-
acteristics are hidden in the application-speci�c measures.
Thus, any shortcomings in a robot team's ability to oper-
ate robustly or with a high degree of fault tolerance, for
example, would be measured by an increased time to com-
plete the mission (or by never completing the mission at
all), a decreased distance traveled, fewer objects moved,
etc. It would be diÆcult, therefore, to determine the rela-
tive levels of contribution of the various broader-perspective
qualities (e.g., fault tolerance vs. adaptivity) to changes
in the application-speci�c quantitative measures (e.g., dis-
tance traveled). Thus, if one wants to explicitly measure
fault tolerance across several control architectures, and/or
several application domains, these metrics are not suitable.
An important goal of research in the quantitative evalu-

ation of robot control architectures is, therefore, the devel-
opment of metrics that enable quantitative measurement
higher-level characteristics, including fault tolerance, re-
liability, exibility, adaptivity, and coherence. By aver-
aging the results across multiple application domains, we
would then be able to explicitly compare alternative con-
trol architectures in terms of these important application-
independent characteristics. Our continuing research is

Figure 2: Implementations of the ALLIANCE architecture
(on both simulated and physical robots). From top to bot-
tom, these implementations are: \mock" hazardous waste
cleanup, bounding overwatch, janitorial service, and box
pushing.

Application domain # Robots Metric description Metric de�nition

1. \Mock" hazardous 2-5 (P) a. Time of task tmax

waste cleanup completion

b. Total energy
Ptmax

t=1

Pm

i=1 ei(t),
used where ei(t) is energy used by

robot i through time t (m robots)
2. Box pushing 1-2 (P) Perpendicular dist. d?(t)=t,

pushed per unit time where d?(t) is ? distance moved through time t
3. Janitorial service 3-5 (S) a. Time of task tmax

completion

b. Total energy
Ptmax

t=1

Pm

i=1 ei(t),
used where ei(t) is energy used by

robot i through time t (m robots)
4. Bounding 4-20 (S) Distance moved d(t)=t,

overwatch per unit time where d(t) is distance moved through time t

5. Formation-keeping 4 (P & S) Cumulative
Ptmax

t=0

P
i6=leader di(t),

formation error where di = distance robot i is misaligned at t
6. Simple multi-robot 2-4 (P) Number of j(t)=t;

manipulation objects moved where j(t) is number of objects at goal at time t
per unit time

7. Cooperative 2-4 (P) Avg. number of A =
Ptmax

t=1

Pn

j=1
g(B(t);j)
tmax

,

tracking 2-20 (S) targets observed where B(t) = [bij(t)]m�n; (m robots, n targets)
(collectively) bij(t) = 1 =) robot i observing target j at t,

g(B(t); j) =

�
1 if exists i s.t. bij(t) = 1
0 otherwise

8. Multi-vehicle 2-4 (S) Quantity of earth q(t)=t,
production dozing moved per unit time where q(t) is quantity of earth moved through t

Table 1: Summary of metrics used in ALLIANCE implementations. (In the second column, \P" refers to physical robot
implementations; \S" refers to simulated robot implementations.)

Figure 3: Additional implementations of the ALLIANCE
architecture. From top to bottom, these implementations
are: cooperative manipulation, formation-keeping, cooper-
ative tracking of multiple moving targets, and cooperative
production dozing.

aimed at developing these higher-level metrics for the eval-
uation of robot team performance.

Acknowledgments

This article has been authored by a contractor of the U.
S. Government under Contract No. DE-AC05-00OR22725.
Accordingly, the U.S. Government retains a nonexclusive,
royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U. S.
Government purposes. Research sponsored in part by the
Engineering Research Program of the OÆce of Basic Energy
Sciences, U. S. Department of Energy. Oak Ridge National
Laboratory is managed by UT-Battelle, LLC for the U.S.
Dept. of Energy under contract DE-AC05-00OR22725.

References

[1] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and
F. Robert. Multi-robot cooperation in the Martha
project. IEEE Robotics and Automation Magazine,
1997.

[2] T. Arai, H. Ogata, and T. Suzuki. Collision avoid-
ance among multiple robots using virtual impedance.
In Proceedings of the Intelligent Robots and Systems
(IROS), pages 479{485, 1989.

[3] T. Balch. Social entropy: An information theoretic
measure of robot team diversity. Autonomous Robots,
8(3), 2000.

[4] T. Balch and R. Arkin. Behavior-based formation
control for multi-robot teams. IEEE Transactions on
Robotics and Automation, December 1998.

[5] Tucker Balch and Ronald C. Arkin. Communication
in reactive multiagent robotic systems. Autonomous
Robots, 1(1):1{25, 1994.

[6] J. Deneubourg, S. Goss, G. Sandini, F. Ferrari, and
P. Dario. Self-organizing collection and transport
of objects in unpredictable environments. In Japan-
U.S.A. Symposium on Flexible Automation, pages
1093{1098, Kyoto, Japan, 1990.

[7] Alexis Drogoul and Jacques Ferber. From Tom Thumb
to the Dockers: Some experiments with foraging
robots. In Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, pages
451{459, Honolulu, Hawaii, 1992.

[8] Douglas Gage. Randomized search strategies with im-
perfect sensors. In Proceedings of SPIE Mobile Robots
VIII, Boston, September 1993.

[9] David Jung and Alexander Zelinsky. Grounded sym-
bolic communication between heterogeneous cooperat-
ing robots. Autonomous Robots, 8(3), July 2000.

[10] S. Mahadevan and J. Connell. Automatic program-
ming of behavior-based robots using reinforcement
learning. In Proceedings of AAAI-91, pages 8{14, 1991.

[11] S. Marsella, J. Adibi, Y. Al-Onaizan, G. Kaminka,
I. Muslea, and M. Tambe. On being a teammate: Ex-
periences acquired in the design of RoboCup teams.
In O. Etzioni, J. Muller, and J. Bradshaw, editors,
Proceedings of the Third Annual Conference on Au-
tonomous Agents, pages 221{227, 1999.

[12] Maja Mataric. Interaction and Intelligent Behavior.
PhD thesis, Massachusetts Institute of Technology,
1994.

[13] David McFarland. Towards robot cooperation. In
D. Cli�, P. Husbands, J.-A. Meyer, and S. Wilson, edi-
tors, Proceedings of the Third International Conference
on Simulation of Adaptive Behavior, pages 440{444.
MIT Press, 1994.

[14] L. E. Parker. Designing control laws for cooperative
agent teams. In Proceedings of the IEEE Robotics and
Automation Conference, pages 582{587, Atlanta, GA,
1993.

[15] L. E. Parker. Heterogeneous Multi-Robot Coopera-
tion. PhD thesis, Massachusetts Institute of Tech-
nology, Arti�cial Intelligence Laboratory, Cambridge,
MA, February 1994. MIT-AI-TR 1465 (1994).

[16] L. E. Parker. On the design of behavior-based multi-
robot teams. Journal of Advanced Robotics, 1996.

[17] L. E. Parker. ALLIANCE: An architecture for fault-
tolerant multi-robot cooperation. IEEE Transactions
on Robotics and Automation, 14(2):220{240, 1998.

[18] L. E. Parker. Distributed control of multi-robot teams:
Cooperative baton-passing task. In Proceedings of the
4th International Conference on Information Systems
Analysis and Synthesis (ISAS '98), volume 3, pages
89{94, 1998.

[19] L. E. Parker. Cooperative robotics for multi-target
observation. Intelligent Automation and Soft Comput-
ing, special issue on Robotics Research at Oak Ridge
National Laboratory, 5(1):5{19, 1999.

[20] L. E. Parker. Lifelong adaptation in heterogeneous
teams: Response to continual variation in individual
robot performance. Autonomous Robots, 8(3), July
2000.

[21] N. S. V. Rao. Terrain model acquisition by mobile
robot teams and n-connectivity. In Proceedings of
the Fifth International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2000), 2000.

[22] I. Rekleitis, G. Dudek, and E. Milios. Graph-based
exploration using multiple robots. In Proceedings of
the Fifth International Symposium on Distributed Au-
tonomous Robotic Systems (DARS 2000), 2000.

[23] D. Rus, B. Donald, and J. Jennings. Moving furni-
ture with teams of autonomous robots. In Proceedings
of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 235{242, 1995.

[24] D. Rus and M. Vona. A physical implementation of
the self-recon�guring crystalline robot. In Proceedings
of the IEEE International Conference on Robotics and
Automation, pages 1726{1733, 2000.

[25] D. Stilwell and J. Bay. Toward the development of
a material transport system using swarms of ant-like
robots. In Proceedings of IEEE International Confer-
ence on Robotics and Automation, pages 766{771, At-
lanta, GA, 1993.

[26] C. Unsal and P. K. Khosla. Mechatronic design of a
modular self-recon�guring robotic system. In Proceed-
ings of the IEEE International Conference on Robotics
and Automation, pages 1742{1747, 2000.

[27] A. Yamashita, M. Fukuchi, J. Ota, T. Arai, and
H. Asama. Motion planning for cooperative trans-
portation of a large object by multiple mobile robots
in a 3d environment. In Proceedings of IEEE Interna-
tional Conference on Robotics and Automation, pages
3144{3151, 2000.

[28] M. Yim, D. G. Du�, and K. D. Roufas. Polybot: a
modular recon�gurable robot. In Proceedings of the
IEEE International Conference on Robotics and Au-
tomation, pages 514{520, 2000.

Shared Autonomy and Teaming: A preliminary report*

Henry Hexmoorαβ and Harry Duchschererγ

* This work is supported by AFOSR grant F49620-00-1-0302.

α Computer Science & Computer
Engineering Department, Engineering Hall,

Room 313, Fayetteville, AR 72701
βCenter for Multisource Information Fusion
University at Buffalo, Buffalo, NY 14260

γUniversity of North Dakota
Grand Forks, North Dakota, 58202

ABSTRACT

We outline how an agent’s shared autonomy considerations affect
its interaction in a team. A unified model of acting and speaking
will be presented that includes teaming and autonomy. This model
is applied to the domain of satellite constellation. We introduce our
simulator and outline our application of autonomy and teaming
concepts.

KEYWORDS: Multi-agent Systems, Shared Autonomy,
Agent Teams

1. INTRODUCTION

We have presented Situated Autonomy as a moment-by-
moment attitude of an agent toward a goal and have argued
that it is a useful notion in modeling social agents [6].

Figure 1 Action Selection

 We argued that a combination of the nature and the
strength of an agent’s beliefs and motivations lead the agent
to perceive one of the following: (a) the agent chooses itself
to be the executor of the goal, (b) the agent delegates the
goal entirely to others, (c) the agent shares its autonomy

with other agents, or (d) the agent has a relatively small and
undetermined responsibility toward the goal. Our focus in
this paper is when the agent perceives shared autonomy.

 Situated autonomy is an important part of an agent’s
action selection. Figure 1 shows a very simple action
selection in Belief Desire Intention (BDI) paradigm and the
role of situated autonomy. Along with goals and beliefs, we
believe situated autonomy is used in the process of
determining intentions. The process can be highly cognitive
as in planning or less cognitive as in reaction generation.
Enablers are the agent’s perception of its own abilities,
social factors, tools, and resources.

 There are many accounts of starting or joining a team [2,
4, 10]. We favor the ingredients of intentional cooperation
laid out by Tuomela: (a) collective goal or plan, (b) strong
correlation among member’s interest or preferences, and (c)
having a cooperating and helping attitude.

 We believe that in common situations, an agent’s
situated autonomy changes at a lot faster pace than its
participation in a team. Once an agent perceives shared
autonomy toward a goal, it may be inclined to recruit one or
more agents to form a team. After a team is formed, the
agent’s degree of shared autonomy will change at the speed
of perceived changes to the cognitive ingredients of situated
autonomy. A recruited agent’s degree of shared autonomy
will be smaller than the recruiter’s shared autonomy but
after a team is formed will change to any level.

 We are developing a model that unifies acting and
speaking [7]. This model uses production rules to encode a
conversational policy. A conversational policy is a
modeling system that is designed to encode a set of
conventions shared among a group of agents [5]. Such
systems are generally called Normatives [1,10]. A
prototypical agent follows the conventions of the group in
communicating and sharing mental states. However,
situated autonomies of each agent will individualize its
interactions and allow it to deviate from the expected
behavior.

enablers
sensory
data

communications

beliefs

communication
goal

physical
goal

situated
autonomy

communication
intention

physical act
intention

 We will present a model of conversational model in
generic, non-BDI format. Each agent will personalize parts
of conversational policy in its own BDI paradigm. A
conversation policy is two types of simple production-like
structures we will call transitions, shown below.

physical condition * spoken word/phrase * speak state
è speak state

physical condition * speak state
è spoken word/phrase

 To model physical actions of an agent in reactive
behaviors, we introduce two other types transitions, shown
below.

physical condition * spoken word/phrase * act state
è act state

physical condition * act state
è act

 A number of agents may share a unified model. For
example, a group of agents may share a conversational
policy. The shared model becomes their Norm. By entering
a model and tracking the shared states, agents can
synchronize their actions. Privately, each agent will
consider transitions in terms of beliefs or goals, and
intentions.

 In the general model, physical conditions arbitrate
among productions that provide alternative acts or words at
a given state. However, each agent will have a personalized
perception and interpretation of the physical conditions in
terms of beliefs. We consider agents’ situated autonomy and
teaming consideration is determined by the agent’s unique
perceptions of the common physical conditions. Below we
rewrite the transitions from an agent’s perspective and add
situated autonomy. ‘Physical conditions’ and ‘spoken
word/phrases it hears’ are things about which an agent has
beliefs. The states are the agent goals (or interchangeably
desires). The ‘physical act’ or ‘chosen word/phrase for
communication’ are the objects of an agent’s intentions.

Belief(physical condition) *
Belief(spoken word/phrase) *

Goal(speak)
è Goal(speak)

Belief(physical condition) *
Goal(speak) *

situated autonomy
è Intention(spoken word/phrase)

Belief(physical condition) *
Belief(spoken word/phrase) *

Goal(act)
è goal(act)

Belief(physical condition) *
Goal(act) *

situated autonomy
è Intention(act)

 The remainder of this paper is organized by working
through an example of a unified model and how agents can
personalize the physical conditions and consider teaming
and changes in their Shared Autonomy. We will present a
simulation of a constellation of satellites that can be tasked
from ground. We will show our unified model and related
issues of learning autonomy level using this application
domain. We have not yet conducted experiments with
situated autonomy and hence we consider this report a
preliminary report.

Figure 2. The Server’s graphic screen

2. SIMULATION OF A CONSTELLATION
OF SATELLITES

We have developed our own satellite simulator to illustrate
our research ideas outlined in this paper. The simulator
follows the principles of TechSat 21 [8]. SaVi is a similar
software created at the Geometry Center at the University of
Minnesota for the visualization and analysis of satellite
constellations [3]. It has been used to simulate various
satellite constellations such as Globalstar, Iridium, and
Teledesic. SaVi differs from ours in that it is simply a
simulator of orbital satellite constellations, and does not
implement autonomy in its satellites.

 Our simulator is composed of two primary modules; the
server, and the agent. The server module handles the
creation of all agent objects in the simulation and acts as a
router to facilitate the passing of messages between various
agents. There are two types of agents that can be created
within this environment, satellite agents and ground station
agents. These agents are implemented as objects and have
similar capabilities, with the satellites having the additional
ability to change their location within the environment. The
server module is also responsible for the accurate

representation of all objects in the graphical environment
(Figure 2).

 The agent module contains the functional components of
the agents. These components constitute the essence of the
agent’s purpose and functionality. Behavioral functions and
autonomy states can be created and transitioned by
accessing these module components through the use of
behavior rules in the agent’s behavior file. Behavior rules
are comprised of conditional checks and assignment calls to
the functional components in the form of simple production
rules.

 The satellite simulator was implemented using Mesa and
supported by the collision detection routines which are part
of the SOLID library package. The simulation is comprised
of a central solid sphere surrounded by a wire-frame sphere
to establish a latitude/longitude coordinate system. The
sphere is currently scaled to represent the earth, and
rotational velocity is approximately 120 times nominal.
Graphically, the satellites are represented as green spheres
with groundstations being yellow spheres on the planet's
surface. The entire simulation can be rotated on any of the
three axises. This allows for the simulation to be viewed
from various prespectives. Additionally, any agent can be
selected to be "tracked" in the simulation. This has the
affect of centering the agent at the origin, with all other
objects, including the planet, revolving around the agent.
Blue line segments are used to show connections between
satellites that have a line of sight communications
capability, or connections between a satellite and a ground
station (Figure 4). The SOLID library was used to make
this determination, since the Mesa libraries do not directly
support the detection of intersections between the
connecting line segments and the planetary bodies. All
satellites orbit at velocities which are appropriate for their
altitude, with respect to a planet such as the earth.

 The satellites and ground stations that orbit and reside on
the planet are implemented as objects and have
communication capability to other agents via message
passing through the socket connection with the server. The
position of each of these agents is determined by the data
that is provided to the server in a text file. The text file
contains only the most basic of information necessary to
place the agent in the graphics environment of the server.

 As each agent object is created, it reads a behavior file,
which contains the rules that will govern its actions with
respect to communication policy and physical actions that
may be needed to achieve a desired goal. The format and
examples of these rules is described in more detail in the
next section.

3. TAKING 3 SCANS OF AN AREA

Assume the ground station will need three independent
images of a given longitude and latitude from a given
altitude. Let’s call the task 3Image. The ground station
issues the command to the nearest satellite and that satellite
will be responsible to perform the task either by itself if no
satellites are available. The satellite will complete the
images itself taking one image in each orbit crossing the
given location. If the satellite so decides it recruits other
satellites to complete the task. Each of the recruited
satellites may recruit another satellite. After recruiting one
satellite, either satellite may decide to recruit a third
teammate.

Figure 4. Communication lines

 Here we will present a conversational policy that will
govern interagent communication.

 The following are the agent speak states:
0 – Start state
1 – Ground station has issued a command and a Satellite has
received this message.
2 – A satellite has received and accepted the command.
3 – A second satellite has been contacted.
4 – The second satellite has accepted the command.
5– A third satellite has been contacted.
6– The third satellite has accepted the command and we
now have a team.
7- Ground control has received the first image.
8- Ground control has received the second image.
9- Ground control has received the third image.
10- Success State

11- Failure State. This state occurs when any of the images
are not received in a reasonable amount of time. State 0 is
the start of 3-imaging.

 The following are the set of available words/phrases:

S0 – Satellite agent says “Hello” to other agents to
announce its presence, if it is currently idle.
S1 – Ground station issues a command 3Image [Longitude]
[Latitude] [Altitude]
S2 – A satellite accepts command. The satellite says "Roger
to 3Image"
S3 – Ground states acknowledges that a team leader has
agreed to take the task and will now accept images by
speaking “Ready to receive images”.
S4 – A satellite recruits another satellites for 3Image. The
satellite may say “Team 3Image?”
S5 – If a satellite accepts the request for being part of a team
for 3Image, it may say “Willco”.
S6 - If a satellite rejects the request for being part of a team
for 3Image, it may say "Unable".
S7 – “bye” is spoken when a team member is no longer able
to be part of the team.
S8 – “Downloading Image #1” is spoken when image #1 is
downloaded to the ground Station.
S9 – “Downloading Image #2” is spoken when image #2 is
downloaded to the ground Station.
S10 – “Downloading Image #3” is spoken when image #3
is downloaded to the ground Station.
S11 – “Received Image #1” is spoken when image #1 is
received by the ground Station.
S12 – “Received Image #2” is spoken when image #2 is
received by the ground Station.
S13- The ground station may say “Task Complete” when all
three images are received.
S14- With an excessive silence, the policy ends
unsuccessfully, “Task Aborted”.

The following are the physical conditions. For each
condition we note the agent that perceives it.

P0 – Start condition.
P1 - There is a need for 3Imgaing and a satellite is chosen
for tasking. This condition is perceived by GROUND only.
P2 - Satellite is unable to participate in a team for one of
two reasons: It is in danger or it has not yet finished its
previous task. This condition is perceived by the SAT that is
contacted to perform the task.
P3 – Satellite is able to take lead on a task and is available.
This condition is perceived by SAT only.
P4 – Another satellite is detected that can potentially be a
team-mate. This condition is perceived by SAT.
P5- Satellite is able to be a team-player. This condition is
perceived privately by the SAT. All SAT agents privately
perceive conditions P6-P10.
P6- An image has been collected.

P7- An image has been successfully collected and
transmitted to the ground station.
P8- Two images are successfully collected and transmitted
to the ground.
P9- Three images are successfully collected and transmitted
to the ground.
P10– The chosen Satellite has received the command.
Ground station is now ready to receive images. This
condition is perceived by GROUND only.
P11- All the external conditions and instrumentation
conditions for taking a picture are met.

 In the following speak state transitions, each agent’s
type is noted by a “GND” for ground station or “SAT” for
satellite. SATAVL, TIMEOUT, UNABLE, AND PICT are
boolean conditions. SATAVL determines if a satellite agent
is available (free of prior tasks and capable of taking on new
a task) for the current agent. The availability is determined
with respect to the satellite’s current speak state and
physical conditions. TIMEOUT holds if an excessive
amount of time has elapsed since the last change in speak
state. PICT indicates if the agent has any pictures that can
be downloaded to the ground station. UNABLE denotes the
satellite’s propioception of being busy with a prior task or
somehow being “out of service”. PICT denotes the absence
of such a condition. “SPK:<destination>” construct is used
to specify to whom the spoken phrase is intended.
CUR_AGNT is the agent most recently identified as
available by the SATAVL check. The default CUR_AGNT
is the speaking agent.

 The following are the speak-state transitions.

P0*1*GND*S1*è0

P3*0*SAT*S1è1
P3*1*SAT*S3è2
P4*2*SAT*S4è3
P4*4*SAT*S4è5
P4*3*SAT*S6è2
P4*3*SAT*S4è4
P4*5*SAT*S5è6
P5*0*SAT*S3è2
P2*3*SAT*S7è0
P2*4*SAT*S7è0
P2*5*SAT*S7è0
P2*6*SAT*S7è0
P2*7*SAT*S7è0
P2*8*SAT*S7è0
P4*4*SAT*S7è2
P4*5*SAT*S7è3
P4*6*SAT*S7è4
P7*2*SAT*S11è7
P7*4*SAT*S11è7
P7*6*SAT*S11è7
P6*2*SAT*S11è7
P6*4*SAT*S11è7
P6*6*SAT*S11è7
P8*7*SAT*S12è8

P6*7*SAT*S12è8
P7*7*SAT*S12è8
P9*8*SAT*S13è9
P6*8*SAT*S13è9
P7*8*SAT*S13è9
P8*8*SAT*S13è9
P10*0*GND*S2è1
P10*1*GND*S3è2
P10*2*GND*S8è7
P10*7*GND*S9è8
P10*8*GND*S10è9
P10*9*GND*S13è10
1*SAT*S14è11
2*SAT*S14è11
3*SAT*S14è11
4*SAT*S14è11
5*SAT*S14è11
6*SAT*S14è11
7*SAT*S14è11
8*SAT*S14è11
P10*1*GND*TIMEOUTè11
P10*7*GND*TIMEOUTè11
P10*8*GND*TIMEOUTè11

 The following are the speak transitions. SA denotes the
agent’s level of situated autonomy.

P0*0*SAT*TIMEOUTèSPK:ALL*S0
P1*0*GND*TIMEOUTèSPK:CUR_AGNT*S1
P0*0*SAT*S4èP5
P3*1*SATèSPK:ALL*S2
P10*1*GNDèSPK:ALL*S3
P4*2*SAT*SAèSPK:ALL*S4
P5*0*SAT*S4èP2
P6*2*SAT*SAèSPK:ALL*S5
P7*2*SAT*SAèSPK:ALL*S8
P4*4*SAT*SAèSPK:ALL*S4
P2*4*SAT*SAèSPK:ALL*S7
P7*4*SAT*SAèSPK:ALL*S8
P2*6*SAT*SAèSPK:ALL*S7
P7*6*SAT*SAèSPK:ALL*S8
P2*0*SATèSPK:ALL*S6
P2*3*SATèSPK:ALL*S7
P2*5*SATèSPK:ALL*S7
P2*7*SATèSPK:ALL*S7
P2*8*SATèSPK:ALL*S7
P8*7*SATèSPK:ALL*S9
P9*8*SATèSPK:ALL*S10
P10*7*GNDèSPK:ALL*S11
P10*8*GNDèSPK:ALL*S12
P10*9*GNDèSPK:ALL*S13
P10*11*GNDèSPK:ALL*S14

 The following are the act transitions. “A” denotes an act,
which in 3Imaging is taking a picture.

P11*2*SAT*SAàA
P11*4*SAT*SAèA
P11*6*SAT*SAèA

 In addition to the conversational policy and action rules
(above), we have designed rules for our agents to infer
physical conditions based on exiting physical conditions and
their current speak states and either (a) what they hear, (b)
propioception of time or success of their own task (taking a
picture), or (c) perception (availability of another satellite
for teaming). We will consider these rules to be more
domain oriented and intended for internal use of agents.
Collectively, we will refer to these rules as domain rules.

 The following are mainly based on hearing.

P1*0*GND*S2èP10
P2*0*SAT*S7èP0
P0*0*SAT*S1èP3
P4*4*SAT*S5èP3
P0*0*SAT*S3èP5

 The following are mainly based on agent perception.

P0 * 0 * GND*SATAVLè P1
P3*2*SAT*SATAVLèP4
P3*4*SAT*SATAVLèP4

 The following are mainly based on agent propioception.

P1*1*GND*S1*TIMEOUTèP0
P5*2*SAT*PICTèP6
P4*6*SAT*PICTèP6
P4*6*SAT*PICTèP7
P6*2*SAT*PICTèP7
P6*4*SAT*PICTèP7
P6*7*SAT*PICTèP8
P7*7*SAT*PICTèP8
P6*8*SAT*PICTèP9
P7*8*SAT*PICTèP9
P8*8*SAT*PICTèP9
UNABLE èP2

4. USING CONVERSATIONAL POLICY

Agents can use the conversational policy for forming their
beliefs, goals, and intentions. Each agent will apply the
policy, action, and domain rules to new messages it
receives. The following is our highest-level loop pseudo
code for agent update.

For (agent; 1; numAgents)
 While (new receive message)
 {
 1. Determine SA
 2. For (rule; 1; numRules)
 If (rule applies)
 a. Perform transitions
 Use SA to resolve conflicts
 b. Update beliefs and goals
 3. Perform the intention for speaking or acting
 within reaction constant
 }

Given a goal and the prevailing physical conditions agents
constantly update their SA. SA is used in resolving conflicts
in rules and in final decision of intention to be formed.
Based on situated autonomy agents perform their picture
taking or recruit other agents as teammates. The GND agent
will note P0 or P1 (and form a belief) and will instantiate an
instance of 3Imaging conversational policy. GND will
maintain state 0 as its goal. Being in state 0 and having
perceived P1, GND will use a speak transition to intend and
then to issue S1. If the satellite (call it SAT1) has received
the message S1 the speak state transition is used to reach
state 1. GND and satellite SAT1 share the goal of being in
state 1. SAT1 may perceive P3 and using a speak state
transition to arrive at a desire to be in state 2 and also form
an internal goal in achieving the command. GND does not
determine P3 so it has no access to this perception. It
however has access to the state transition that allows it to
desire state 2. In state 2, SAT1 privately considers P3, P4,
and P11 and arrives at a determination of situated
autonomy. In 3Imaging, the lead agent once it reaches state
2, must consider exogenous physical conditions 3, 4, and 11
along with all agent endogenous factors to determine its
autonomy. If it decides on shared autonomy, the agent must
begin recruiting other agents as teammates. Otherwise, it
will either do the task itself or delegate it to others.

 If SAT1’s decision favors a team formation, it uses a
state transition to arrive at state 3 and forms a desire in it.
Due to space limitation, we will not discuss the details of
team formation. Since P4 is not shared with GND, it does
not have the same belief. Let’s call the second Satellite
SAT2. SAT1 and SAT2 now share the desire to be in state
3. If SAT2 perceives P5, it will use a state transition and
moves to state 4 and forms a desire in state 4 and the goal to
be a teammate in 3Imaging. If SAT2 perceives P2, it will
inform SAT1 and move back to state 2. SAT2 no longer has
to want state 3. SAT1 will desire State 2.

 For an agent that is recruited to be a teammate in state 4
it has already decided to have shard autonomy. It must
consider its exogenous physical conditions 3 and 4 (P3 and
P4) along with all agent endogenous factors to determine its
autonomy in order to decide whether yet another teammate
is needed. If it decides to recruit another agent it will move
through states to state 6.

 For an agent that is recruited to be a teammate in state 6
it has already agreed to have shard autonomy and since it is
the third member of the team no other teammates are
needed. Conditions P6-P9 may be perceive by either
Satellite agent and all SAT agents share goals in state 7-11.

 In the next section we will briefly discuss how autonomy
will vary.

5. AUTONOMY MEASURES

Situated Autonomy depends on time, and strengths of belief
and goal. [6]. Each agent reacts at different speeds. The
times between sensing and acting is an agent’s reaction
constant and the optimal values can be learned. This greatly
affects the agent’s autonomy decision. Temporally, from the
shortest reaction time to the longest, an agent’s autonomy is
based on it’s pre-disposition, disposition, and motivation.
Therefore, an agent’s reaction constant is important. An
agent’s beliefs used in autonomy decision vary from weak
to strong. An agent’s goals are directed to self, other, or
group. The goals vary in strength of motivation from weak
to strong.

 In 3Imaging, agents have different reaction constants and
we are experimenting with the effect of slow versus fast
reacting satellites. An agent’s beliefs are about the physical
conditions and the speak states and change in strength. The
goals are about taking images and they vary based on the
agent’s prior commitment. If a Satellite agent has
committed to a 3Imaging task, it might commit to yet
another 3Imaging command if it senses that it can complete
the task. After the first command, the motivation level for
the goal is set to be less than for the first command. A
combination of belief and goal degrees are used for
determining SA.

As of this writing, our implemented system runs and images
are gathered. However, we do not yet have situated
autonomy experiments. We plan to compare runs of the
system with different reaction constants. The autonomy
levels in our agents will be learned as combinations of
beliefs and goals. The metrics we will use for feedback are
timeliness of images collected.

6. SUMMARY AND CONCLUSION

We have developed a production-style representational
framework that unifies acting and speaking. Our
representation extends conversational policy scheme. It
explains how agents can use the shared normative models of
conversational policy for forming private beliefs, goals, and
intentions. We outlined a scheme for flexible teaming that
uses the notion of situated autonomy.

We have implemented our model in the domain of
constellation of satellites. Our system runs but we have not
yet completed experiments with how timely team formation
improves our system performance.

REFERENCES

[1] C.E. Alchourron and E. Bulygin, (1971). Normative
systems, Springer Verlag, Wien.

[2] P. Cohen, H. Levesque, I. Smith, (1997), On Team
Formation, In J. Hintika and R. Tuomela, Contemporary
Action Theory, Synthese.

[3] G. Bergen (1998), SOLID - Interference Detection
Library, Department of Mathematics and Computing
Science, Eindhoven University of Technology, P.O. Box
513, 5600 MB Eindhoven, The Netherlands.
(http://www.win.tue.nl/cs/tt/gino/solid/solid2_toc.html)

[4] F. Dignum, B. Dunin-Keplicz, and R. Verbrugge,
(2000), Agent Theory for Team Formation by Dialogue, In
Proceedings of ATAL-2000, Boston.

[5] M. Greaves, H. Holmback, and J. Bradshaw, (1999). What
is Conversation Policy? In Autonomous Agents (Agents-99)
Workshop titled Specifying and Implementing Conversation
Policies, Seattle, WA.

[6] H. Hexmoor, (2000a). A Cognitive Model of Situated
Autonomy, In Proceedings of PRICAI-2000 Workshop on
Teams with Adjustable Autonomy, Australia.

[7] H. Hexmoor, (2000b). Conversational Policy: A case study
in air traffic control, In Proceedings of International
Conference in AI, IC-AI-2000, Los Vegas.

[8] TechSat 21: Advanced Research and Technology
Enabling Distributed Satellite Systems, Overview Briefing
of TecdhSat 21, http://www.vs.afrl.af.mil/vsd/techsat21.

[9] R. Tuomela, (2000), Cooperation, Kluwer Pub.

[10] A. Valente and J. Breuker, (1994). A Commonsense
Formalization of Normative Systems, In Proceedings of the
ECAI-94 Workshop on Artificial Normative Reasoning, J.
Breuker (ed), Amsterdam, p. 56-67.

Real Time Distributed Expert System for Automated Monitoring of Key Monitors in
Hubble Space Telescope

Reza Fakory, Ph.D. Majid Jahangiri, Ph.D.
Computer Sciences Corporation Computer Sciences Corporation

mfakory@csc.com mjahangiri@v2pop.hst.nasa.gov

Abstract

A distributed expert system for monitoring the
critical telemetry (the Key Monitors) of Hubble
Space Telescope (HST) has been designed and
developed. The Key Monitors Expert System
(KMES) monitors the general health of the space
craft operation through analysis of the Key
Monitors data. KMES uses rule-based
approaches and notifies operators/system
engineers when it receives a limit violation from
Front End Processor subsystem (FEP). The
design of KMES is similar to the design of a
previously reported system called “Expert
System for Automated Monitoring” (ESAM)
which was developed for HST [1]. However,
KMES uses an approach different from ESAM’s
approach. ESAM was designed to monitor all
telemetry mnemonics in a selected subsystem via
establishment of tight limits for mnemonics. On
the other hand, KMES has been designed to
monitor the Key Monitors, providing
notifications for out-of-limit conditions in
accordance with documented operational
procedures. Upon detection of an out of limit
conditions, KMES analyzes data for
contingencies. It fires appropriate rules to request
associated engineering data from telemetry
repositories. Subsequently, KMES sends e-mails
and e-pages to notify the appropriate System
Engineers (SEs) and Operators. The duration of a
limit violation is monitored to eliminate transient
faults. KMES logs all out of bound (limits)
violations but only takes an action for each
persistent violation. In addition, the distributed
system design approach of KMES allows a pre
screening of data variations to reduce the number
of queued rules. Also, design of KMES was
modified to include only selected part (sub-
database) of a main database into KMES’s
subprocesses. The sub-database contains data
associated with mnemonics that are used within
the associated subprocess. This approach
significantly reduced the required real-time
execution time and the memory usage for the
expert system.

KMES also allows the user to override any
activated miscompare. This feature permits
operators to adjust for known anomalies or
changes in operational context. The system
generates event messages to override actions; the
events include a user login ID and the reason for
the override.

Currently, KMES includes rules to monitor
seven subsystems. KMES rules can be expanded
to include rules for other subsystems. This paper
describes the fundamental design and features of
KMES. The results for a simulated scenario
leading to failure of a Key Monitor and timely
detection of the failure by KMES and ESAM are
presented.

1 Background

The Vision 2000 Command and Control System
(CCS) Product Development Team has been
formed to reengineer the HST ground system
[2,3]. The CCS ground system consists of
several systems including System Monitoring &
Analysis (SYM). Development of an expert
system for telemetry monitoring, fault detection
and recovery for the HST is one of the SYM’s
responsibilities.

Prior to design of KMES, the SYM group
developed a real-time Expert System for
Automated Monitoring (ESAM) [1]. The system
was designed and developed to monitor the
general health of the spacecraft and to detect
faults within the Hubble Space Telescope (HST)
via monitoring all telemetry mnemonics within a
selected subsystem. It employs model-
based/rule-based, hierarchical fault tree analysis
with forward-chaining rule propagation to
compare expected state values with true states.
The system uses a custom-built neural network
model and System Engineer (SE)-provided
algorithms to dynamically derive the expected
state values based on knowledge of real-time or
stored spacecraft commands. During operations,
real-time telemetry values (i.e., true states) are
compared to the expected state values for

possible limit violations. The duration of a limit
violation is monitored to eliminate transient
faults. The system logs all miscomparisons but
only issues a system event message for each
persistent miscomparison. The persistence
implementation approach significantly reduces
the number of false miscompare messages.
Currently, ESAM only includes rules and models
associated with fault detection in Electrical
Power System (EPS) of HST. Further expansion
of ESAM for monitoring other subsystems of the
spacecraft encountered two problems. First, for
acquisition of telemetry data, from Information
Sharing Protocol (ISP) into the expert system, a
shared memory technique was employed to
overcome synchronization between RTserver,
the expert system server [1], and the ISP server.
This design employed RTdaq, a COTS product
from Talarian Inc. [6], that acquired data from
shared memory and transferred data to RTserver.
Further tests and analysis of results revealed that
occasionally data was dropped during
transmission from the shared memory to RTdaq.
In addition, RTdaq did not have provisions for
transmitting status flags that accompany the
telemetry data from ISP, which indicate the
general health and validation of the data. Second,
modeling and development of rules, for
incorporation of dynamic limits, required a
significant amount of time from experts and
system engineers with high level of expertise in
the relevant subsystems of HST.
In order to overcome the first problem, it was
decided to develop new modules with direct
interface between RTserver and ISP via an
existing middleware. For the second problem, it
was decided to monitor the critical telemetry (the
Key Monitors) and notify experts in accordance
with Key Monitors documentation [7]. In this
design, the limit values are constants that are
defined in the Project Reference Database
(PRD). The Front End Processor (FEP)
subsystem of CCS detects limit violations for all
monitors. KMES receives the Key Monitor
values as well as the companion status flags from
FEP. The status flag indicates limit violated Key
Monitors. These new enhancements were
incorporated into the design of KMES, and
delivered as a part of a CCS Release delivery.
The following sections describe the design
features of the developed system.

2 Introduction

Expert systems are corner stones of knowledge
Management [4,5] foundations and as such are
designed to reduce dependency on humans and
increase reliability of complex systems. For
many cases, expert systems are simply a way to
codify the explicit and sometimes tacit
knowledge of experts (operators and system
engineers) so it can be used to provide guidance
and solutions for known problems. The real time
Key Monitors Expert System (KMES) was
designed and developed to automate the experts
monitoring of the Key Monitors. In concept,
KMES has been developed to automatically
monitor the general health of spacecraft
operation and notify operators and system
engineers upon recognition of defined anomalies.

The Key Monitors are defined in the HST
Contingency Plan document [7]. This document
establishes a consistent and approved response to
out of limit conditions or misconfigurations
throughout mission operations. The out-of-
bound limits have constant values defined in the
Project Reference Database (PRD). In general,
PRD includes two sets of limits namely yellow
limit and red limit. For some Key Monitors
mnemonics, the yellow and red limits coincide.
In these cases, the response associated with red
limit violation has priority over the response
associated with the yellow limit violation. The
FEP subsystem determines violated telemetry
and sets a status flag, which accompanies the
mnemonic value. For example, the FEP sets the
companion status flag for a mnemonic to “L”
when the telemetry value drops below the lower
value of the red limit associated with the
mnemonic. The following sections describe the
developed system.

3 System Description

KMES is primarily a rule-based expert system.
KMES subscribes and receives the Key Monitors
mnemonic values and the companion status flags
from ISP. Most of KMES rules are simple and
the hierarchy is shallow. However, the required
actions for some limit violations are contingent
on configuration or statuses of other equipment.
Therefore, the rules associated with these limit
violations have hierarchical levels. Upon
detection of a violation, KMES looks for
persistence of the violation. If the mnemonic’s
value remains beyond limit boundaries, for a
time greater than the persistence period, KMES

Figure-1 KMES External Interfaces

fires the associated contingency rules. As a part
of actions within these rules, KMES sends
requests to the Analysis subsystem for historical
data products. Figure-1 shows KMES external
Interfaces. KMES specifies the start time as well
as the stop time for the requested data. Format of
the requested data and type of the requested
historical data are stored in ASCII files that are
accessible to the Analysis subsystem. The
generated historical data products are stored in a
directory accessible to operators and system
engineers. The system engineers (SEs) may use

the data products to further analyze potential
problems use the products.

4 KMES Architecture

Figure-2 shows process architecture for KMES.
KMES consists of sub-processes for data
communication as well as subprocesses for
evaluation and reporting of the state of the
spacecraft. The main processes are:

• RTD (Receive Telemetry Data) • PMD (Publish Monitoring Data)
• MGS (Manage States) • RMD (Route Monitoring Data), the RTserver
• REF (Respond to Events and Faults)

Figure-2 KMES Distributed Architecture

Receive
Telemetry

Data
(RTD)

Route
Monitoring

Data
(RMD)

Publish
Monitoring

Data
(PMD)

Event
Manager

Manage
States
(MGS)

Respond
to Events
and Faults
(REF)

Telemetry

Telemetry

Telemetry,
Events

Compare Status,
Events

Compare Status

Information
Sharing
Protocol

(ISP)

KMES Processes

External Processes

Analysis

Historical Data
Request,

Event
Messages

State Info,
Compare Status

MON

ISP Event Manager

Front End

Processor
Analysis

 CCS
Manager

 Product
 Generation
 Request

SE
Notification
Request

Telemetry
Data

User

Interface

Condition
Detection
Message

State Status

Originally, KMES employed a single database
where all of KMES’s processes included a copy
of the data-base. However, this approach caused
excess increase in the size of run time memory
usage when KMES was expanded to include all
seven subsystems of HST. Therefore, the design
of KMES was modified to reduce the size of
memory usage. In this new approach, every
subprocess of KMES includes part of database
that contains data related to mnemonics which
are referenced or used within the subprocess.
The following sections briefly describe function
and features of each sub-process within KMES

4.1 Receive Telemetry Data (RTD)

The RTD process receives change-only data
from the ISP server. RTD sends this data to the
other KMES processes via the RMD process.
Originally this subprocess employed RTdaq (a
commercial product) and shared memory
approaches for synchronization between RMD
and ISP. However, it was found that occasionally
data was dropped out during transmission
between shared memory and RMD. In addition,
RTdaq did not have capabilities to transmit
status flags, which accompany the telemetry
data. ISP sends the status flags as a part of data
throughout the CCS subprocesses. These status
flags indicate the status of data and they are set
by the FEP subsystem within the CCS. A blank
status flag indicates that the data is valid. At this
time, ISP sends telemetry data with status flags
that are set to nine possible values, one at a time.
The status flag values are prioritized, four of
these values indicate that the telemetry value is
beyond pre-specified limits as defined in the
PRD. The remainders of the status-flag values
indicate if there has been a problem with data
conversion or data transmission. The RTD
subprocess was enhanced to eliminate the use of
RTdaq as well as the shared memory approach.
The enhanced version constructs custom
designed data-packets that are in
RTsmartSockets format. The packets contain
changed only data and are sent to RTserver
(RMD) for distribution to subprocesses within
KMES.

4.2 Manage States (MGS)

The MGS process receives real-time telemetry
data from ISP and generates compare status
associated with each received Key Monitors

mnemonic. The compare status indicates if there
is a miscomparison (corresponding to a limit
violation). This subprocess sets compare status
in accordance with values of status flags that
accompany telemetry data received from ISP. A
compare status mnemonic may take four
different values for a miscomparison
corresponding to four possible ways of limit
violations:

a) Yellow Low;
b) Yellow High;
c) Red Low;
d) Red High.

Yellow limits are warnings as specified by
system engineers. Red limits are typically for
serious violations associated with hardware
limitations. MGS sends all compare status
changes along with their status flags and time
stamp to REF subprocess via RMD.

4.3 Respond to Events and Faults (REF)

REF includes all rules associated with limit
violated Key Monitor mnemonics. Upon receipt
of a miscomparison associated with Key
Monitors from MGS, REF tracks the
miscomparison for a pre-specified period of time
(persistence time). If the limit violation persists,
then REF fires the appropriate rules and sends
appropriate historical data request with specified
start time and stop time to the Analysis
subsystem. REF also sends an event that
indicates detection of the anomaly. The event
message also indicates how soon the requested
data product will be available for access by SEs
or operators. The Analysis subsystem receives
information for the data request from REF and
retrieves the historical data in accordance with
the format specified by SE(s) and Operators. The
list and format of the data request are stored in
specially designed files called “Historical
Request Definition Files”.

4.4 Publish Monitored Data (PMD)

The PMD process receives state data consisting
of mnemonic’s name, value, and time stamp
from MGS (via RMD) while publishing this data
to ISP. Along with this data there is a status flag
indicating the override status of the mnemonic’s
value. The status flag indicates whether the user

has overiden the mnemonic value within KMES
or that the mnemonic value is derived by KMES.

4.5 Route Monitoring Data (RMD)

The RMD process consists of a real time
RTserver. The process receives and routes data
and event messages within KMES’s processes.

5 KMES Characteristic Features

KMES consists of a group of distributed
processes that communicate through a
middleware layer. This modular design has many
advantages such as maintainability and
flexibility in where and how these processes are
executed. If one process is overloading system
resources, it can be relocated to another host
machine. Among other advantages, KMES
employs a distributed system approach to
facilitate:

a) Change Data only executions
b) Maintenance simplification

This approach provides a capability to queue
only those rules that are affected by the status of
a mnemonic. In this way, only the rules that have
to send a historical data request and e-mail or e-
page will be fired and the rest of the rules will
not be examined until later times when a status
change affects them.

6 Results

KMES has been developed with rules associated
with actions that are required when a Key
Monitor has violated its limits. Currently, Rules
associated with the following seven subsystems
of HST have been implemented:

• Data Management Subsystem (DMS)
• Electrical Power Subsystem (EPS)

• Instrumentation & Communication Subsystem
(I&C)

• Optical Telescope Assembly (OTA)
• Pointing Control Subsystem (PCS)
• Safing Subsystem (Safing)

The following section discusses the results
obtained from operation of KMES during a
simulated anomaly. For comparison, the results

of the previously designed system, ESAM, for
the same simulated anomaly is also
demonstrated. As it was mentioned earlier,
ESAM detects anomalies by comparing the
engineering telemetry received from HST with
some internally generated expected values.
ESAM analyzes the discrepancies between the
true and expected states to determine if an
anomaly actually exists. Therefore, ESAM uses
some tight and dynamically calculated limit
boundaries. In contrast, KMES depends on some
predefined and fixed limit boundaries.

The following section, compare the results from
ESAM and KMES for a simulated scenario
leading to failure of a sensor in the Electrical
Power System of the spacecraft.

7 Scenario

The test scenario was designed to examine the
rule executions resulted from an anomaly
associated with one of the HST batteries. The
spacecraft is equipped with six batteries. If only
four batteries are nominal then the entire battery
system is considered acceptable for normal
operation. Previously captured data from a
routine spacecraft orbit was fed into the HST
simulator. The simulator was started in play back
mode with continuous data feed. Figure-3 shows
voltages for the first and the second batteries of
the spacecraft, respectively. Figure-4 shows the
currents associated with the first and second
batteries. Figure-3 and Figure-4 also depict the
high-expected limit and the low-expected limit
calculated by ESAM. For comparison, Figure-3
also shows the constant limits used for Key
Monitors out of bound violations. As shown, the
constant limits are normally wider than the limits
calculated by ESAM. The results for battery one
demonstrates that the system was in normal
operation until time 23:05, at this time (point A)
a ramp down sensor anomaly was simulated into
the telemetry data for voltage of the first battery.
Figure-3 shows that within about 4 minutes and
40 seconds (point B) into the incident, the
battery voltage fell below the low limit as
calculated by ESAM. However, Figure-3 shows
that after 9 minutes and 30 seconds into the
anomaly, the battery voltage fell below the
constant limit used by the FEP. At this time
KMES received an associated status flag from
FEP that indicated the limit violation. Therefore,
KMES queued the rules associated with the
battery anomaly and sent appropriate

notifications and historical data requests when
the limit violation persistence was satisfied. The
results show that ESAM detected anomaly
within about five minutes after initiation of the
anomaly. However, KMES sent anomaly
notifications within ten minutes after initiation of
the anomaly.

8 Future Work

A well-structured distributed expert system to
monitor the Key Monitors of the Hubble Space

Telescope has been developed and delivered.
The results for the first release of this system are
presented. The following highlights some of the
items sought for improvement and further
enhancements of the monitoring system:

a) a variable persistence time for each or subset
of the Key Monitor mnemonics;

b) retrieve appropriate operating procedure(s)
for response associated with an anomaly;

c) track violation changes from yellow limit
boundary into red limit violation boundary;

d) accept a user-defined periods for

notifications frequency associated with each
of the limit violations;

e) GUI editor interface for visualization and
graphical editing of rules.

9 Conclusion

A distributed expert system, KMES, for
notification of anomaly and initial response (i.e.,
request associated engineering data for analysis)
has been developed. The results of KMES for a
simulated failure has been compared with similar
results obtained from a previously designed
expert system, ESAM. KMES uses the results of
anomaly detection with constant limit values
while ESAM calculates the expected limit
boundaries. The results for detection of a sample
sensor failure by the two systems are
demonstrated. It was found that when calculated
limits are employed then anomaly might be
detected earlier than when constant limits are
used for detection of the anomaly. However,
notification of limit violations based on constant
and established limits provides facilities for
timely development of KB rules and execution
of approved notifications.

10 Nomenclature

CCS Command and Control System
ESAM Expert System for Automated

Monitoring
FEP Front End Processor
ISP Information Sharing Protocol

KMES Key Monitors Expert System

11 References

[1] “A Real-Time Expert System for Automated
Monitoring of the Hubble Space Telescope,”
R. Fakory and E. Ruberton, Intelligent
Systems Conference, Gaithersburg, MD,
September 1998.

[2] Consolidated HST Associated Mission
Products (CHAMP) Contract, NAS50000.

[3] ”Re-engineering of the Hubble Space
Telescope (HST) Reduce Operational Costs
(PartII),” M. Garvis, K. Lethonen and W.
Burdick, internal report.

[4] “Knowledge Management Handbook,” Jay
Liebowitz, CRC Press 1999.

[5] “Development and Deployment of a Rule-
Based Expert System for Autonomous Satellite
Monitoring,”
 L. Wong, F.Kronberg, A. Hopkins, F. Machi,
P. Eastham, Astronomical Data Analysis, Vol
101, 1996.

[6] Talarian Corporation, support@talarian.com.

[7] “Hubble Space Telescope (HST)
Contingency Plan document,” Vol2, Lockheed
Martin Missiles &
 Space (LMMS), report No. LMSC/P061924,
1997.

ABSTRACT

This paper provides a new framework for the distributed
intelligent control of complex systems. The behavior of a
given subsystem as it interacts with other subsystems is
explored. The inherent limitations associated with distrib-
uted planning and control procedures are revealed. These
limitations further limits one ability to evaluate system
performance. Knowing these limitations, allows one to
seek improved procedures for managing complex systems,
which should also lead to improved system performance.

1. INTRODUCTION

Measuring system performance inherently represents a
subjective task, beginning with the definition of the con-
sidered system. The decision of what system elements
will be included within the considered system is arbitrary.
Moreover, excluding elements from the considered sys-
tem does not eliminate the potential for these elements to
interact with the considered elements. Rather, such inter-
actions become inputs to the considered system, whose
values cannot be controlled. The definition of the consid-
ered system necessarily constrains the performance of the
system because one must relinquish control of these envi-
ronmental inputs.

Any performance criteria employed to evaluate a
system must be based upon system variables that can be
measured and controlled. Hence, the scope of the consid-
ered system inherently constrains the type of performance
evaluations that can occur. Often there are multiple crite-
ria to be considered, which necessitates compromise among
the appropriate criteria. Compromise requires a subjec-
tive prioritization among the considered criteria, making
absolute performance evaluations nearly impossible to
achieve.

It becomes difficult to analyze and manage a com-
plex system as a single monolithic entity. Complex sys-
tems are better represented as systems-of-systems. Again,
the definition of the included subsystems is arbitrary. Fur-
thermore, each included subsystem will have its own state

and control variables. These variables again constrain
which performance criteria can be considered by each sub-
system. What often emerges is a collection of subsystems
whose behaviors are characterized via different perfor-
mance criteria.

Even if a monolithic specification for the systemÕs
planning and control problems can be made, there are still
shortcomings, expecially since the monolithic approach
ignores the system-of-systems nature. Monolithic speci-
fication do not capture the multi-resolutional nature of
complex systems where given subsystems address system
variables at different levels of detail and on different time
scales. Monolithic approaches do not scale well. For large-
scale systems, monolithic approaches become impossible
to implement.

On the other hand, distributed planning and con-
trol introduces other problems. TodayÕs distributed plan-
ning and control technologies do not capture the true na-
ture of the distributed planning and control requirements
for complex systems. Most decomposition procedures for
distributing planning still assume that a monolithic plan-
ning problem exists (see Lasdon [1] and Wismer [2]). In
general, this monolithic planning problem cannot be de-
fined; and even if it could, its complexity would be well
beyond the scope of problems that can be addressed with
available decomposition procedures. Decomposition al-
gorithms further seek an optimal solution to the mono-
lithic planning problem. However, the relationship of op-
timal planning at the subsystem level toward the optimal
planning for overall system within which it resides is sim-
ply not understood. Today, we do not know how to coor-
dinate the planning at a subsystem in order to insure glo-
bal optimality for the overall system within which the sub-
system resides.

Control is essential to implement plans. Again,
the current distributed control technologies are limited.
Perhaps the most common distributed control procedure
is the slow-fast decomposition (see Kokotovic et al. [3]).
Slow-fast decompositions certainly can address situations
where the desired response is known. They usually as-
sume that an aggregated description for the overall response
is known over an extended horizon, which includes the

EVALUATING PERFORMANCE FOR DISTRIBUTED INTELLIGENT CONTROL SYSTEMS

Wayne J. Davis
General Engineering, University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

current time. Subsystems then manage the detailed de-
scription of this same trajectory over a shorter horizon
which again includes the current time. This process con-
tinues where each subsystem addresses more detail over
an even shorter horizon beginning with the current time.
Implicitly, a monolithic control policy has been developed
in that one assumes that the desired aggregate response is
known over the entire time horizon.

Distributed intelligent control (distributed planning
and control) approaches do not permit a monolithic de-
scription of the desired system trajectory. Rather, the sys-
tem trajectory evolves as a collective response of several
subsystems considering different temporal horizons and
system elements. The planned response and the associ-
ated implementing actions evolve with time. Neither the
monolithic planning or control problems are ever stated or
solved. It is obviously difficult to manage such systems.
Even more difficult is projecting their performance.

I revisited the distributed planning and control
problem last year. My desire was to define what a distrib-
uted planning control system could accomplish. All the
basic principles, including optimality and controllability,
were set aside. The goal was to determine how a sub-
system could address its assigned planning and control re-
sponsibilities while effectively interacting with other sub-
systems. Subsequently, the coordination of the interac-
tions among the entire ensemble of distributed planning
and control systems in order to provide an effective over-
all system response had to be addressed Testing effective-
ness became a concern given the inherent inability to de-
fine the overall system problem as it continued to evolve
in time.

This paper provides a brief discussion of the basic
discoveries arising from this rapprochement. The funda-
mental principles of optimality and controllability have
been reexamined and mathematical proofs/arguments do
exist for the inherent limitations. Unfortunately, space limi-
tations prevents me from providing these mathematical ar-
guments. Instead, this paper will provide basic discover-
ies only. The paper first investigates how subsystems in-
teract with each other. Next, the comprehensive nature of
the overall system response arising from these interactions
is addressed. Finally, the inherent limitations upon plan-
ning and control will be itemized. These limitations fun-
damentally impact oneÕs ability to manage and project sys-
tem performance. They must be addressed.

2. FUNDAMENTAL CONCEPTS

We begin our development with two basic assumptions:
¥ Most complex systems can be represented as a collec-

tion of subsystems that interact with each other. That
is, complex systems are actually systems of sub-
systems.

¥ Each subsystem has a purpose, which it fulfills by ex-
ecuting tasks. Furthermore, the tasks that each sub-
system can execute are related to the tasks that other
subsystems can execute.

Consider a single subsystem. Its associated con-
trol inputs include (see Figure 1):
¥ Endogenous control inputs that it generates in order to

implement its planned response.
¥ Assigned goals from other subsystems.
¥ Feedback information from other subsystems.
¥ Exogenous inputs from a subsystemÕs environment.

For a given subsystem, the assigned goals and
feedback information might also be considered as exog-
enous inputs because these are generated by other sub-
systems. However, a given subsystem can determine which
goals it will accept. The goals that it assigns to other sub-
systems will also influence their behavior and subsequent
feedback information. Thus, only environmental inputs
cannot be influenced in any manner by a given subsystem.

Should the subsystem have an option to accept or
reject a goal? We believe that such an option is essential
in order to insure that the recipient subsystem can feasibly
respond to the goal. If one subsystem cannot satisfy its
assigned goals, then the subsystem cannot respond in a
feasible manner and the ability to control the subsystem is
diminished or eliminated.

The assignment of goals to another subsystem rep-
resents one type of output that can occur as a subsystem
responds to its control inputs. In addition, the given sub-
system must provide feedback information to any other
subsystem from which it has accepted a goal. Finally, the

Figure 1: Basic interactions for a subsystem.

Figure 2: Network representation of subsystem relation-
ships.

Figure 3. Hierarchical system(s) where each sub-
system (node) has at most one Assignor.

subsystem may also generate outputs that act upon the
systemÕs environment.

Typically, when one seeks to coordinate sub-
systems, one employs hierarchical based notions of super-
visors (supremals) and subordinates (infimals). Hierar-
chies, right or wrongly, have been the subject of much re-
cent criticism. In this paper, our desire is to provide a
neutral atmosphere for discussing such coordination con-
cerns.

We define the Assignors as the set of controllers
that can assign goals to a given subsystem. Acceptors are
the set of subsystems to which a subsystem can assign
goals. Figure 1 depicts the proposed relationships among
the subsystems.

There are two special situations. If the set of As-
signors for a given subsystem is empty, then the subsystem
receives only exogenous inputs from the its environment
and feedback information from its Acceptors. We refer to
such a subsystem as a Creator because it generates goals
only, and does not accept any goals from any other sub-
system. Every system model requires at least one creator.
However, Creators are generally artificial constructs re-
sulting from the modeling process. That is, the Assignors
for a Creator are assumed to be outside the scope of the
modeled system. Thus, goals coming from these external
subsystems, or implicit Assignors, are viewed as inputs to
a Creator from the systemÕs environment.

If the Acceptors set for a given subsystem is empty,
the subsystem is a Process. Processes can accept and pro-
cess goals, but they cannot reassign their goals to any other
subsystem. Hence, Processors can only accept inputs from
their Assignors and the systemÕs environment. In response
to these inputs, they generate outputs upon the environ-
ment and provide feedback information to their Assign-
ors.

We can graphically represent the proposed sys-
tem structure (see Figure 2). We first define a node for
each subsystem. We then employ directed arcs from a given
subsystemÕs node to each node within its Acceptors set.
Finally, from each subsystem node within a given
subsystemÕs Assignors set, we draw a directed arc to the
node for the given subsystem. Using network terminol-
ogy, the Creator(s) become the source(s) to the system
network while the Processes are the sinks.

In general, there can be more than one path from a
given Creator to a given Process. (In Figure 2, there are
multiple paths from node 1 to node 7.) However, there
need not be a path from every Creator to every process.
(In Figure 2, there is no path from node 1 to node 8.) In
the special case where the number of elements in each
subsystemÕs Assignors set is less than or equal to one, the
representative system network becomes a tree and repre-
sents a conventional hierarchy (see Figure 3). If there is
more than one Creator in the hierarchical case, then the
overall system must be represented as a set of disjoint hi-
erarchies that do not interact with each other (see Figure
3).

Although the potential for loops can exist within
a systemÕs network, loops should not exist from the con-
ceptual point of view. Later we will show that the detail
considered by an Acceptor is greater than its Assignor. We
will also show that the planning horizon for any Acceptor
should be less than that of the Assignor. Loops could oc-
cur when an Assignor for a given subsystem is also con-
tained in the given subsystemÕs Acceptors set. However,
if a subsystem is simultaneously contained within the Ac-
ceptors and Assignors sets for another given subsystem,
then the simultaneous Acceptor/Assignor must be less de-
tailed from the system to which it assigns goals and more
detailed than the same system from which it accepts goals.
Obviously, the two implied relationships are contradictory.

Therefore, we may conclude that the network representa-
tion of the relationships among subsystems for all mean-
ingful systems must be a directed acyclic network (con-
taining no loops).

The reader should note that we have spoken of
goal assignments rather than tasks, as mentioned earlier.
We assume that a goal can contain a task. Moreover, a
goal can also describe how an assigned task should be ex-
ecuted. For example, the Assignor might request that the
task be completed by a given time or completed at mini-
mum cost.

3. TOWARD AN INTEGRATED APPROACH

No (sub)system can generate an optimal response when
acting as an independent agent. A given subsystemÕs re-
sponse is dependent upon its goals and the subsequent re-
sponse of the subsystems to which it has assigned goals.
Furthermore, one cannot demonstrate that the collective
response arising from the coordinated interaction among
all its subsystems is optimal because we have not (and
cannot) define the overall problem.

Because no subsystem can respond independently
from the other subsystems, it follows that each subsystem
must constantly interact with other subsystems: its As-
signors and Acceptors. However, a given subsystemÕs in-
teractions with an Assignor are fundamentally different
from its interactions with an Acceptor. Each subsystem
considers a time interval and a level of detail that differs
from those of its Assignors and Acceptors. Each subsystem
must move from its current state to a specified goal state
while responding to any external inputs from the overall
systemÕs environment and any peculiarities that arise in
its own dynamic evolution.

Let us consider the interaction of a given sub-
system with its Assignors. A given subsystem can only
address its behavior over an interval. Nevertheless, the
way in which a subsystem responds within a time interval
can affect the future behavior of the entire system beyond
the considered time interval. The problem is that the given
subsystem is incapable of assessing these future conse-
quences beyond the time interval that it considers. The
subsystem must instead rely upon the subsystems contained
within its Assignors set to make such assessments. In per-
forming this function, each Assignor considers the future
in order to specify goals for the given subsystem. The
subsystem receiving the goals employs those goals in or-
der to define its desired final state at then end of its plan-
ning horizon.

Similarly, most subsystems are also limited by the
level of detail that they can consider. In order to affect the
more detailed responses that are required to meet its as-
signed goals, each subsystem assigns goals to its Accep-
tors. Thus, as each Acceptor addresses an assigned goal, it
provides a more detailed system response on behalf of the
subsystem that assigned the goal. The subsequent feed-
back information provided by the Acceptor during its ex-
ecution of an assigned task assists the Assignor in assess-
ing the beginning state for its planning horizon. (Later we
will demonstrate that this beginning state for a subsystemÕs
planning horizon cannot be the current system state. It
must always be a projected future state from which the
given subsystem will attempt to a desired final state.) Two
extremes, or boundary conditions, for a given subsystemÕs
planning/control problem have now been specified. Its
included planning and control (intelligent control) capa-
bilities then guide the given subsystem from its projected
initial state toward the desired final state while respond-
ing to forecasted environmental inputs and other peculiari-
ties of the system response.

Every element of the subsystemÕs planning/con-
trol problems changes with time. The subsystemÕs esti-
mate of its initial state changes as its Acceptors execute
their assigned tasks. The subsystemÕs goal changes with
time as its Assignors respond to feedback information that
the subsystem provides. Finally, the forecasts for the
subsystemÕs future interactions with its environment must
be constantly updated.

We can now define three basic functional require-
ments for each subsystemÕs intelligent controller. These
include:

Task Accepting: The intelligent controller must interact
with the intelligent controllers that manage each subsystem
within its Assignors set. The purpose of this interaction is
to define new goals and to update current goals. Each
assigned goal specifies at least one task to be addressed
along with a set of constraints. Because an Assignor ad-
dresses the system in a more aggregated sense than the
subsystem that accepts the task, the Task Accepting func-
tion must decompose the assigned tasks into subtasks. In
addition, the execution constraints accompanying each ac-
cepted task must also be reformulated in order to specify
appropriate (or consistent) constraints for each defined
subtask.

The task decomposition and the associated con-
straint specification comprise a goal decomposition pro-
cess. This goal decomposition must guarantee that the

accepted goals can be satisfied given the accepting
subsystemÕs current state. The Task Accepting function is
also responsible for continuously updating the projected
response of the subsystem as feedback information to each
Assignor. Remember, however, that an Assignor consid-
ers the system response in an aggregated manner. Thus,
the Task Accepting function must summarize its projected
response in order to provide the estimated performance
statistics that can be understood by its Assignor.

Task Assigning: After the assigned goals are decomposed,
the resulting subtasks and their associated execution con-
straints must be reassigned to the subsystemÕs Acceptors.
In making the subsequent goal assignments, the Task As-
signing function will employ the selected control law that
implements the subsystemÕs current plan. The Task As-
signing function also monitors feedback information from
each Acceptor to which it has assigned a goal. Using this
feedback information, it projects the future performance
of the subsystem as it continues to execute its assigned
goals under the selected control law. This projected re-
sponse is then employed by the Task Accepting function
within the same intelligent controller in order to provide
feedback information to the subsystemÕs Assignors.

Performance Improvement: The system now has an es-
timated current state as well as a projected response as it
implements its current goals under the planned response
and enabling control law. The Performance Improvement
Function continuously seeks a better control law for imple-
menting the subsystemÕs assigned goals. Remember, how-
ever, that every element of the control problem is dynamic
and uncertainties do exist. Given this reality, closed-loop
control laws inherently perform best because they can tai-

lor their response to the systemÕs current state. It is also
desirable to employ predictive control procedures when-
ever the current control action depends upon both the
systemÕs current and predicted future state. Whenever a
new control law is selected, it is forwarded to Task As-
signing function for implementation.

4. THE FUNDAMENTAL PRINCIPLES OF A COORDINATED

 RESPONSE

This section addresses the basic system response. Figure
4 provides a primitive schematic for the multi-resolutional
behavior of these systems. Let t

0
 represent the current time

that advances with real-time. We then divide the future
time axis into several intervals, including [t

1
, t

2
), [t

2
, t

3
), [t

3
,

t
4
) and so forth. Note that we have not yet included a time

interval between [t
0
, t

1
) or [t

4
, ¥) for reasons to be discussed

later. In Figure 4, the entire state vector has been pro-
jected as a single value upon the y-axis. This state trajec-
tory is further divided into segments: one segment for each
time interval specified above. Let us assume that each
segment corresponds to the trajectory for a given subsystem
operating under the control of its intelligent controller.
Considering the subsystem associated with the state tra-
jectory on the interval [t

3
, t

4
), its Assignors manage the

state trajectory beyond t
4
, while its Acceptors manage the

state trajectory on the interval [t
2
, t

3
).

Suppose we view each component of the state tra-
jectory as a sophisticated ÒSlinky.Ó The multi-resolutional
nature of the systems implies that size and length of each
ÒSlinkyÕsÓ spring gets smaller and shorter as its associated
time interval approaches t

0
. Now let us further assume

that two adjacent ÒSlinkiesÓ are attached to each other and
that the boundary conditions must match at each junction.

Timet0 t1 t2 t3 t4

Figure 4: Basic Schema for multi-resolutional system response.

The ÒSlinkyÓ for interval [t
3
, t

4
) interfaces with a larger

ÒSlinky,Ó with less resolution, at t
4
. It also interfaces with

a shorter ÒSlinky,Ó with greater resolution at t
3
. Assume

also that each ÒSlinkyÓ can manage its shape. However,
no ÒSlinkyÓ can act independently of the others. Specifi-
cally, the ÒSlinky Ò on interval [t

3
, t

4
) must interact with

the ÒSlinkyÓ operating beyond t
4
 in order to define the

boundary conditions at t
4
. To be more precise, the Task

Accepting function of the [t
3
, t

4
)-subsystem must interact

with the Tasking Assigning functions for the Assignors of
the [t

3
, t

4
)-subsystem. Similarly, the Task Assigning func-

tion for the [t
3
, t

4
)-subsystem must interact with the Task

Accepting functions of its Acceptors. Finally, the shape
of the ÒSlinkyÓ between t

3
 and t

4
 is controlled by the Per-

formance Improvement function as the [t
3
, t

4
)-subsystem

responds to forecasted external inputs that will likely act
upon it during the interval [t

3
, t

4
).

Given the recursive system-of-systems nature for
the system, each Acceptor for the [t

3
, t

4
)-subsystem inter-

acts with the [t
3
, t

4
)-subsystem in a manner similar to the

way that the [t
3
, t

4
)-subsystem interacts with its Assignors.

Similarly, each Acceptor for the [t
3
, t

4
)-subsystem will simi-

larly interface with its own AcceptorÕs Task Accepting func-
tions. Note also that none of the indicated subsystems can
touch t

0
 because only a Process that has no Acceptors can

reach t
0
. (We will discuss this assertion later.)
Now, let us try to visualize the dynamic behavior

of the proposed systemÕs response. Remember, t
0
 (the cur-

rent time) must continue to advance in real time. We may
assume that the entire state trajectory is dynamic, and nei-
ther the interface times (t

1
, t

2
, É) nor the boundary condi-

tions are fixed. Instead, the shared boundary conditions
between two adjacent ÒSlinkiesÓ are constantly being re-
negotiated in real time. As the boundary conditions are
modified and the forecasts for the external effects upon a
given subsystem are updated, the intelligent controller re-
sponds by modifying the projected desired shape of the
ÒSlinkyÓ between the appropriate interface times.

We have stated that only Processes can affect the
system in real time. Several important conclusions fol-
low:
¥ No interface time at the junction of two subsystems’

responses can ever occur. These interface times con-
stantly change with time and must always be greater
than the current time t

0
.

¥ Only Processes react to real inputs from the external
environment. The other subsystems plan their response
based upon forecasted inputs from the environment
and their current negotiated boundary conditions.

¥ The planned trajectories of the non-processing sub-
systems are never realized. These planned trajecto-
ries only conjecture how the system will likely respond
for planning purposes.

¥ The purpose of the intelligent controllers for the non-
processing subsystems is simply to establish goals for
another subsystem. The recursive system-of-system
nature of these systems implies that these goals will
become more detailed as their interfacing times ap-
proach t

0
.

Figure 4 does not adequately depict the interac-
tion between a given subsystem and its Assignor(s) and
Acceptors. In Figure 5, we provide a more detailed illus-
tration of the proposed interaction among the subsystems
as they interact with each other. It also illustrates the evo-
lution of time and the limitations that a given system has
in managing the response of the system.

Time advances from left to right in Figure 5. The
large sphere represents the state space for the aggregate
subsystem that projects into the most distant future. Within
that subsystemÕs state space, there are two smaller spheres.
The right-most of these spheres represents the goal space
that the system seeks to reach at t

4
. In this case, we as-

sume that the final goal is established by the systemÕs en-
vironment because the Assignors for this subsystem have
not been included within the system model. Note that this
is an arbitrary choice based upon the modelerÕs desires
and is determined to a certain extent by how far the mod-
eler wants to forecast the systemÕs future response.

The left-most sphere within the largest sphere rep-
resents the forecasted state at t

3
 from which the aggregate

subsystem initiates its planning. Thus, the aggregate sub-
system represented by the largest sphere will plan on the
interval [t

3
, t

4
). The values for both t

3
 and t

4
 are dynamic

and must increase with real-time, and t
4
 is always greater

than t
3
. (The reader will note that we have not included t

4

within the subsystemÕs planning horizon because the goal
state at t

4
is specified by an agent outside of the modeled

system).
The role of the intelligent controller for the [t

3
, t

4
)-

subsystem is to determine the ideal trajectory from the
anticipated state at t

3
 to the desired goal state at t

4
. During

that interval, the subsystem must also respond to other
external inputs. Because the planning interval is beyond
the current time, these external inputs must be forecasted.
Hence, the planned response on the [t

3
, t

4
) interval is a

projected response only. It will not (or cannot) be imple-
mented as planned.

The [t
3
-t

4
)-subsystem cannot manage the response

of the system before t
3
 because it cannot address the detail

required to describe the systemÕs response prior to t
3
.

Rather, this detail will be addressed by two other sub-
systems as indicated by the second largest spheres in Fig-
ure 5. The fact that the spheres are smaller has no relation
to the dimensions of each subsystemÕs state space. Rather,
the diameters of the spheres correspond to the relative
length of the planning interval that each subsystem ad-
dresses.

The [t
3
, t

4
) subsystem estimates its initial state at

t
3
. Thus state is achieved by the subordinateÕs response on

the [t
2
, t

3
) time interval. In order to manage the subordi-

nate subsystemÕs response, the [t
3
, t

4
)-subsystem must de-

fine goal states for the two subsystems at t
3

(1) and t
3

(2), re-
spectively. However, the state variables considered by the
subordinate subsystems are different than those consid-
ered by the [t

3
, t

4
)-subsystem. Hence, a transformation

between the state spaces must occur. This transformation
is implemented by the Task Assignor for the [t

3
, t

4
)-sub-

system as it interacts with the Task Acceptors within [t
3
,t

4
)-

subsystemÕs Acceptors. This transformation involves two
types of interactions. With respect to the [t

3
, t

4
)-subsystem,

the first interaction determines a mutually acceptable set
of feasible goals for each Acceptor. The second interac-
tion monitors each AcceptorÕs progress in achieving its

assigned goals. Here, the Task Assigning function for [t
3
,

t
4
)-subsystem must transform each AcceptorÕs projected

goal achievement into the corresponding state representa-
tion within the [t

3
, t

4
)-subsystemÕs state space. Moreover,

the individual AcceptorÕs response must be integrated to
form a single composite estimate for the [t

3
, t

4
)-subsystemÕs

initial state at t
3
.

The goals established for the Acceptors will cover
the time interval up to t

3
(1) and t

3
(2), respectively. In order

to insure planning across the entire time interval up to t
4
, it

is essential that t
3
 be less than or equal to either t

3
(1) or t

3
(2).

Thus, the planning interval for a given Acceptor usually
overlaps the planning interval of its Assignor(s). In addi-
tion, the state space for the individual Acceptors can also
overlap each other. For example, it might be possible for
both Acceptors to execute a given task. It is also possible
that the state spaces are not entirely congruent. One Ac-
ceptor might be able to execute tasks that the other Accep-
tor cannot.

On the other hand, the state trajectories through
the subsystemÕs state spaces must not intersect. Two dis-
tinct subsystems may not perform identical tasks upon the
same entity at the same time. Two or more subsystems
could possibly collaborate, but one subsystem would still
assume primary control of the entity and subsystem ac-
tions upon the entity must differ from the others in some

Figure 5. A more detailed representation of the multi-resolutional state evolution.

manner at a given time. A fundamental law of physics
prevents two objects from occupying the same region of
space and time simultaneously.

Given its desired final goal state at t
3
(1), the [t

2
,

t
3

(1))-subsystem plans its response through its state space.
The [t

2
, t

3
(1))-subsystem interacts with its Acceptors in or-

der to estimate its initial planning state at t
2
. This interac-

tion also establishes the goals for each of the [t
2
, t

3
(1))-

subsystemÕs Acceptors at t
2
(1), t

2
(2) and t

2
(3). Having estab-

lished each of their individual goals, the [t
2
,

t

3
(1))-

subsystemÕs Acceptors can determine their individual ini-
tial planning states. The same process is repeated for each
state trajectory emanating from t

4
 until a process, (which

has no Acceptors), is encountered. This terminating pro-
cess can be managed at t

0
. Hence, the recursive planning

process generates a collection of state trajectories, each
beginning at t

0
 and terminating at t

4
.

Figure 5 depicts a situation where hierarchical
planning occurs. Each subsystem has at most one Assignor,
and the collection of state trajectories illustrated in Figure
5 forms a tree. Observe that state trajectories continue to
divide as the diagram progresses from the most distant time
t
4
 toward present time. Moreover, each subsystem has a

single state trajectory to manage. In Figure 5, we did not
include every possible subsystem in order to simplify the
figure. (Observe that some of the state trajectories do not
begin at t

0
.) If all potential subsystems for a hierarchical

system were included, then every path in the state-trajec-
tory tree would start at t

0
 and terminate at a common root

at t
4
.

Recently, hierarchical systems have fallen from
favor. Certainly, hierarchies, like all organizational struc-
tures, do have their limitations. However, most limita-
tions occur when the Assignors dictate their goal assign-
ments and the Acceptors cannot reject an assigned goal.
Recent management and distributed planning approaches
seek to empower the subordinate subsystems with greater
planning and control responsibilities. Contrary to popular
belief, such empowerment does not negate hierarchical
structures.

Unfortunately, there are situations where hierar-
chies are inappropriate. For example, the government typi-
cally seeks to prevent individual corporations from col-
laborating in order to create a monopolistic environment.

One benefit of the proposed approach is that we
can now characterize the limitations that arise when one
must employ a structure other than a hierarchy. In par-
ticular, we can now test many of the claims that the advo-
cates of other architectures have cited.

5. CONCLUSIONS

The efficacy of current planning and control technologies
requires a monolithic statement of the systemÕs planning
and control problems. If such monolithic statements can-
not be made, then available planning and control technolo-
gies are probably irrelevant. The above discussion dem-
onstrates that it will be impossible to provide such mono-
lithic specifications for most complex systems.

One might question whether it is possible to pro-
vide a monolithic statement for any systemÕs planning and
control problems. Remember that oneÕs definition of the
systemÕs boundary is arbitrary. In most cases, the defined
system is still dependent upon other environmental sub-
systems that are being managed by other entities. A sub-
system seldom has complete control over its planning and
control responsibilities. Witout such control, it is impos-
sible to demonstrate optimality of a planned /executed sys-
tem response with respect to any performance criteria.
Given the current state of affairs, performance evaluations
for a given subsystem level or the composite system should
be avoided. The primary goal must be to develop improved
technologies for managing complex systems.

6. REFERENCES

[1] L. S. Lasdon, Optimization Theory for Large sys-
tems, London, Macmillian Company, 1970.

[2] D. A. Wismer, Optimation Methods for Large-Scale
Systems with Applications, New York, MCGraw-Hill
Book Company, 1971.

[3] P. Kokotovic, H. Khalil and J. O’reilly, Singular Per-
turbation Methods in Control: Analysis and Design,
New York, Academic Press, 1986.

Hypothesis Testing for Complex Agents

Joanna Bryson, Will Lowe† and Lynn Andrea Stein
MIT AI Lab

Cambridge, MA 02139
joanna@ai.mit.edu, las@ai.mit.edu

†Tufts University Center for Cognitive Studies
Medford, MA 02155
wlowe02@tufts.edu

Abstract

As agents approach animal-like complexity, evaluat-
ing them becomes as difficult as evaluating animals.
This paper describes the application of techniques for
characterizing animal behavior to the evaluation of com-
plex agents. We describe the conditions that lead to the
behavioral variability that requires experimental meth-
ods. We then review the state of the art in psycho-
logical experimental design and analysis, and show its
application to complex agents. We also discuss a spe-
cific methodological concern of agent research: how the
robots versus simulations debate interacts with statisti-
cal evaluation. Finally, we make a specific proposal for
facilitating the use of scientific method. We propose the
creation of a web site that functions as a repository for
platforms suitable for statistical testing, for results deter-
mined on those platforms, and for the agents that have
generated those results.

Keywords: agent performance, complex systems, behav-
ioral indeterminacy, replicability, experimental design, subjec-
tive metrics, benchmarks, simulations, reliability.

1. Introduction

Humanoid intelligence is a complex skill, with many interact-
ing components and concerns. Unless they are in an excep-
tional, highly constrained situation, intelligent agents can never
be certain they are expressing the best possible behavior for the
current circumstance. This is because the problem of choosing
an ordering of actions is combinatorially explosive [9]. Con-
sequently, for scientists or engineers evaluating the behavior of
an agent, it is generally impossible to ascertain whether a be-
havior is optimal for that agent. Albus [2] defines intelligence
as “the ability of a system to act appropriately in an uncertain
environment, where appropriate action is that which increases
the probability of success.” Systems of such complexity are
rarely amenable to proof-theoretic techniques [26]. In general,

the only means to judge an increase in probability is to run sta-
tistical tests over an appropriately sized sample of the agent’s
behavior.

Computational systems, in contrast, are traditionally eval-
uated based on theirfinal results and/or on their resource uti-
lization [29]. The historical definition of computational process
(c.f. Babbage, Turing, von Neumann) is modeled on mathe-
matical calculation, and its validity is measured in terms of its
ultimate product. If the output is correct — if the correct value
is calculated — then the computation is deemed correct as well.
More recent descriptions [e.g. 11] have added an assessment of
the time, space, processor, and other resource utilization, so that
a computation is only deemed correct if it calculates the appro-
priate value within some resource constraints.

This characterization of computation is less applicable
when it comes to particular operating systems and other real-
time computational systems. These systems have no final result,
no end point summarizing their work. Instead, they must be
evaluated in terms of ongoing behavior. Guarantees, where they
exist, take the form of performance constraints and temporal in-
variants. Although formal analysis of correctness plays a role
even in these systems, performance testing, including bench-
marking, is an essential part of the evaluation criteria for this
kind of computational system.

Computational agent design owes much to computer sci-
ence. But the computationalist’s tendency to evaluate in terms
of ultimate product is as inappropriate for computational agents
as it is for operating systems. Instead, metrics must be devised
in terms of ongoing behavior, performance rather than finitary
result. But what is the analog to benchmarking when the tasks
are under-specified, ill-defined, and subject to interpretation and
observer judgment?

In this paper, we will examine issues of running such eval-
uations for complex agents. Bycomplex agentswe mean au-
tonomous agents such as robots or VR characters capable of
emulating humanoid or at least vertebrate intelligence. We will
discuss hypothesis testing, including the statistical controver-
sies that have lead to the recent revisions in the standard experi-

mental analysis endorsed by the American Psychological Asso-
ciation. We will also discuss recent advances in methodologies
for establishing quantitative metrics for matters of human judg-
ment, such as whether one sentence is more or less grammati-
cal than another, or an anecdote is more or less appropriate. We
propose a means to facilitate hypothesis testing between groups:
a simulation server running a number of benchmark tests.

2. Motivation: Sources of Uncertainty

Although there is certainly a role for using formal methods in
comparing agent architectures [e.g. 8, 6], what we as agent de-
signers are ultimately interested in is comparing the resulting
behaviorof our agents. Given the numerous complex sources
of indeterminacy in this behavior, such comparison requires the
application of the same kind of experimental methodology that
has been developed by psychology to address similar problems.
In this section we review some of the sources of this indeter-
minacy; in the next we will review analytic approaches for ad-
dressing them.

The first source of indeterminacy is described above: The
combinatorial complexity of most decision problems makes ab-
solute optimality an impractical target. Thus even if there is a
single unique optimal sequence of actions, in most situations
we cannot expect an agent to find it. Consequently, we will ex-
pect a range of agents to have a range of suboptimal behaviors,
and must find a way of comparing these.

The next source of indeterminacy is the environment. Many
agents must attempt to maintain or achieve multiple, possibly
even contradictory goals. These goals are often themselves un-
certain. For example, the difficulty of eating is dependent on the
supply of food, which may in turn be dependent on situations
unknowable to the agent, whether these be weather patterns,
the presence or absence of other competing agents, or in human
societies, local holidays disrupting normal shopping. Thus in
evaluating the general efficacy of an agent’s behavior, we would
need a large number of samples across a range of environmental
circumstances.

Another possible source of indeterminacy is the develop-
ment of agents. As engineers, we are not really interested in
evaluating a single agent, but rather in improving the state-of-
the-art in agent design. In this case, we are really interested in
what approaches are most likely to produce successful agents.
This involves uncertainty across development efforts, compli-
cated by individual differences between developers. Many re-
sults contending the superiority or optimality of a particular the-
ory of intelligence may simply reflect effective design by the
practitioners of that theory [e.g. 7].

Finally, the emphasis of this workshop is on natural, human-
like behavior. Humans are highly social animals, and social ac-
ceptability is an important criteria for intelligent agents. How-
ever, sociability is not a binary attribute: it varies in degrees.
Further, a single form of behavior may be considered more or
less social by the criteria of various societies. Evaluations of

systems by such criteria requires measurement over a popula-
tion of judges.

3. Current Approaches to Hypothesis Testing

The previous section presented a number of challenges to the
evaluation of complex, humanoid agent building techniques. In
this section we review methodologies used by psychology —
the evaluation of human agents — that are available to address
these challenges.

Although it is obvious that comparing two systems requires
testing, the less obvious issues are how many tests need to be
run and what statistical analysis needs to be used in order to an-
swer these questions. In this section we describe three increas-
ingly common problems in Artificial Intelligence and discuss a
set of experimental techniques from the behavioral sciences that
can be used to address them.

The first problem is variability in results: We need to know
whether performance differences that arise over test replications
can be ascribed to varying levels of a system’s ability or to vari-
ation in lighting conditions, choice of training data, starting po-
sition, or some other or some other external (and therefore unin-
teresting) source. Psychology uses statistical techniques such as
the Analysis of Variance (ANOVA) to address these issues. The
second problem is of disentangling complex and unexpected in-
teractions between subparts of a complex system. This can also
be addressed using ANOVA coupled with factorial experimen-
tal design. The third problem is that of rigorously and mean-
ingfully evaluating inherently subjective data. Since many psy-
chology experiments investigate inherently subjective matters,
the field has developed a set of techniques that will be of use
to artificial agent designers as well. The next three sections de-
scribe these solutions in more detail.

3.1 Variability in Results

The problem of comparing performance variability due to dif-
ferences in ability and variability due to extraneous factors is
ubiquitous in psychology. It is dealt with by procedures known
collectively as Analysis of Variance or ANOVA.

3.1.1 Standard ANOVA

In a typical experimental design for comparing performance, K
systems are tested N times each. If the variation in performance
between the K systems outweighs the variability among each
system’s N runs, then the system performances are said to be
significantly different. We then examine the systems pairwise
to get information about ordering. The ANOVA allows us to in-
fer that e.g. although there are differences overall between the
K=4 systems (i.e. some are better than others), the performance
difference between 3 and 4 is reliable, whereas the difference
between 1 and 2 is not reliable because it is outweighed by the
amount of extraneous variation across the N tests. In this case,
although 1 may perform on average better than 2, this does not

imply that it is actually better on the task. If the experiment
were repeated then 2 would have reasonable chance of perform-
ing on average the same as 1, or even better.

The notion ofreasonable chanceused above is the essence
of the concept of significant difference. System 3 is on average
better than 4 in this experiment and the ANOVA tells us that per-
formances are significantly different at the .05 level (expressed
as p<.05). This means that in an infinite series of experimen-
tal replications, if 3 is in fact exactlyas goodas 4, i.e. there
is no genuine performance difference, then the probability of
getting a performance difference as large or larger than the one
observed in this experiment is 0.05. The smaller this probabil-
ity becomes, the more reliable the difference is. In contrast, the
fact that the average performances of 1 and 2 are not signifi-
cantly different means their ordering in this experiment is not
reliable because there is a more than 0.05 probability that the
ordering would not be preserved in a replication.

Notice that hypothesis testing using ANOVA does notguar-
anteean ordering, it presents probabilities that each part of
the ordering is reliable. This is a fundamental difference be-
tween experimental evidence and proof. Scientific method in-
creases the probability that hypotheses are correct but it does
not demonstrate them with complete certainty.

The binary output of hypothesis tests (significant difference
versus no significant difference) and its probability is an unnec-
essarily large loss of information. The American Psychological
Association have consequently recently moved to emphasize
confidence intervals over simple hypothesis testing. Aconfi-
dence intervalis a range, centered on the observed difference,
that in the hypothetical replications will contain the true perfor-
mance value some large percentage, say 95%, of the time. In
the example above, each system has a 95% confidence interval,
or error bar, centered on its average performance with width
determined by the amount of variability between runs. When
two intervals overlap, there is a significant probability that a
replication will not preserve the current ordering among the av-
erages and we can conclude that the corresponding performance
difference is unreliable. This method gives the same result as
simple hypothesis testing above — the performances are not
significantly different — but is much more informative: confi-
dence intervals give an idea about how much variability there is
in the data itself and yield a useful graphical representation of
analytical results.

3.1.2 Alternative Approaches to Analysis

Stating confidence intervals is more informative than simple
significance judgments. However, it also relies on an hypo-
thetical infinity of replications of an experiment. This aspect
of classical statistical inference is a result of assuming that the
true difference in performance is fixed and the observed data
is a random quantity. Alternatively, in Bayesian analysis the
difference is considered uncertain and is modeled as a random
variable whereas the results are fixed because they have already

been observed [5]. The result is a probability distribution over
values of the true difference. To summarize the distribution an
interval containing 95% of the probability mass can be quoted.
This takes the same form as a confidence interval, except that
its interpretation is much simpler: Given the observed results,
the probability that the true difference is in the interval is 0.95,
so if the interval contains 0, there is a high probability that there
is no real performance difference between systems.

The Bayesian approach makes no use of hypothetical ex-
perimental replications and is more naturally extended to deal
with complicated experimental designs. On the other hand, it
does require an initial estimate (or prior distribution) for the
probabilities of various values of the performance difference
before seeing test data. There is much controversy about which
of these approaches is more appropriate. In the context of AI
however, we need not take a stand on this issue. The two ap-
proaches answer different questions, and for our purposes the
questions answered by classical statistics are of considerable
interest. Unlike many of the natural sciences, the performance
of AI systems over multiple replications is not only accessible,
but of particular interest. To the extent we are engineers, AI
researchers must be interested in reliability and replicability of
results.

3.2 Testing for Interacting Components

Many unpleasant software surprises arise from unexpected in-
teractions between components. Unfortunately, in a complex
system it is typically infeasible to discover the nature of inter-
actions analytically in advance. Consequentlyfactorial experi-
mental designis an important empirical tool.

As an example, assume that we can make two changes A
and B to a system. We could compare the performance of the
system with A to the same system without it, using the ANOVA
methods above, and then do the same for B. But when build-
ing a complex system it is essential to also know how A and B
affect performance together. Separate testing will never reveal,
for example, that adding A generates a performance improve-
ment only when B is present and not otherwise. This is referred
to as aninteractionbetween A and B, and can be dealt with by
testing all combinations of system additions, leading to a facto-
rial experiment. Factorial experiments are analyzed using sim-
ple extensions to ANOVA that test for significant interactions
as well as simple performance differences. Factorial ANOVA
methods are described in any introductory statistics textbook
[e.g 23].

In the discussion above we have implicitly assumed that dif-
ferences in performance can be modeled as continuous quanti-
ties, such as distance traveled, length of conversation or number
of correct answers. When the final performance measure is dis-
crete, e.g. success or failure, thenlogistic regression[1, ch.4]
is a useful way to examine the effects of additions or manipula-
tions on the system’s success rate. Information about the effects
of arbitrary numbers of additions, both individually and in in-

teraction, is available using this method, just as in the factorial
ANOVA. Logistic regression also gives a quantitative estimate
of how muchthe probability of success changes with various
additions to the system, which gives an idea of the importance
of each change.

3.3 Quantifying Inherently Subjective Data

Often performance evaluation involves judgments or ratings
from human subjects. Clearly it is not enough that one sub-
ject judges an AI conversation to be lifelike because we do not
know how typical that subject is, and how robust their opinion
is. It would be better to choose a larger sample of raters, and to
check that their judgments are reliable. When ratings are dis-
crete (good, bad) or ordinal (terrible, bad, ok, good, excellent)
then Kappa [22] is a measure of between-rater agreement that
varies from 1 (perfect agreement) to -1 (chance levels of agree-
ment). For judgments of continuous quantities the intraclass
correlation coefficient [13] performs the same task.

However, such discrete classifications are often clumsy. Be-
cause a rating system is itself subjective, the extra variance
added by difference in interpretation of a category can lose cor-
relations between subjects that actually agree on the relative va-
lidity or likeability of two systems. Further, we would really
prefer in many circumstances to have a continuous range of dif-
ference values. Such results can be provided bymagnitude esti-
mation, a technique from psychophysics. For example, Bardet
al. [4] have recently introduced the use of magnitude estimation
to allow subjects to judge the acceptability of sentences which
have varying degrees of syntactic propriety. In a magnitude esti-
mation task, each subject is asked to assign an arbitrary number
as a value for the first example they see. For each subsequent
example, the subject need only say how much more or less ac-
ceptable it is, with reference to the previous value, e.g. twice as
acceptable, half as acceptable and so on. This allows subjects to
pick a scale they feel comfortable with manipulating, yet gives
the experimenter a generally useful metric. For example, in
Bardet al.’s work, a subject might give the first sentence an 8,
the next a 4, the following a 32 — the experimenter records 1s,
.5s and 4s respectively. This method has been shown to reduce
the number of judgments necessary to get very reliable and ac-
curate estimates of acceptability, relative to other methods.

Bard et al. manipulate the sentences themselves, but it is
clear that magnitude estimation can equally well be used to get
fine-grained judgments about how natural the output of a nat-
ural language processing (NLP) system is, and the degree to
which this is improved by adding new components. Nor is the
method limited to linguistic judgments, for it should be equally
effective for evaluating ease of use for teaching software, the
psychological realism of virtual agents or the comprehensibil-
ity of output for theorem proving machinery.

4. Environments for Hypothesis Testing: Robots
and Simulations

As the previous sections indicate, one of the main attributes
of statistically valid comparisons is a large number of experi-
mental trials. Further, these experimental conditions should be
easily replicable and extendible by other laboratories. In Sec-
tion 5. we propose that a good way to facilitate such research
is to create a web location dedicated to providing source code
and statistics for comparative evaluations over a number of dif-
ferent benchmark tasks. This has approach has proven useful in
neural network research, and should also be useful for complex
agents. However, it flies in the face of one of the best-known
hypotheses of complex agent research: that good experimental
method requires the use of robots. Consequently, we will first
provide an updated examination of this claim.

4.1 Arguments Against Simulation

Simulation is an attractive research environment because it is
easy to maintain valid controls, and to execute large numbers
of replications across a number of machines. However, there
have been a number of important criticisms leveled against this
approach.

A Simulations never replicate the full complexity of the real
world. In choosing how to build a simulation, the researcher
first determines the ‘real’ nature of the problem to be solved.
Of course, the precise nature of a problem largely deter-
mines its solution. Consequently, simulations are not valid
for truly complex agents, because they do not test the com-
plete range of problems a natural or embodied agent would
face.

B If a simulation truly were to be as complicated as the real
world, then building it would cost more time and effort than
can be managed. It is cheaper and more efficient to build
a robot, and allow it to interact with the real world. This
argument assumes one of basic hypotheses of the behavior-
based approach to AI [3], that intelligence is by its nature
simple and its apparent complexity only reflects the com-
plexity of the world it reacts to. Consequently, spending
resources constructing the more complicated side of the sys-
tem is both irrational and unlikely to be successful.

C When researchers build their own simulations, they may de-
ceive either themselves or others as to the validity or com-
plexity of the agents that operate in it. Since both the prob-
lem and the solution are under control of the researcher, it is
difficult to be certain that neither unconscious nor deliberate
bias has entered into the experiments. In contrast, a robot is
considered to be clear demonstrations of autonomous arti-
fact; its achievements cannot be doubted, because it inhabits
the same problem space we do.

4.2 Are Robots Better than Simulations?

These arguments have led to the wide-spread adoption of the
autonomous robot as a research platform, despite the known
problems with the platform [16]. These problems reduce essen-
tially to the fact that robots are extremely costly. Although their
popularity has funded enough research and mass production to
reduce the initial cost of purchase or construction, they are still
relatively expensive in terms of researcher or technician time
for programming, maintenance, and experimental procedures.
This has not prevented some researchers from conducting rig-
orous experimental work on robot platforms [see e.g. 10, 25].
However, the difficulty of such procedures adds urgency to the
question of the validity of experiments in simulation.

This difficulty has been reduced somewhat by the advent
of smaller, more robust, and cheaper mass-produced robot plat-
forms. However, these platforms still fall prey to a second prob-
lem: mobile robots do not necessarily address the criticisms
leveled above against simulations better than simulations do.
There are two reasons for this: the need for simplicity and reli-
ability in robots, and the growing sophistication of simulations.

The constraints of finance, technological expertise and re-
searchers’ time combine to make it extremely unlikely that a
robot will operate either with perception anything near as rich
as that of a real animal, nor with actuation having anything
like the flexibility or precision of even the simplest animals.
Meanwhile, the problem of designing simulations with predic-
tive value for robot performance has been recognized and ad-
dressed as a research issue [e.g. 18]. All major research robot
manufacturers now distribute simulators with their hardware. In
the case of Khepera, the robot most used by researchers running
experiments requiring large numbers of trials, the pressure to
provide an acceptable simulator seems to have not only resulted
in an improved simulator, but also a simplified robot, thus mak-
ing results on the two platforms nearly identical. Clearly this
similarity of results either validates the use of the Khepera sim-
ulator, or invalidates the use of the robot.

When a simulator is produced independent of any particular
theory of AI as a general test platform, it defeats much of the
objection raised in chargesA andC above, that a simulator is bi-
ased towards a particular problem, or providing a particular set
of results. In fact, complaintC is particularly invalid as a reason
to prefer robotics. Experimental results provided on simulations
can be replicated precisely in other laboratories. Consequently,
they are generallymore easilytested and confirmed than those
collected on robots. To the extent that a simulation is created for
and possibly by a community — as a single effort resulting in a
platform for unlimited numbers of experiments by laboratories
world-wide, that simulation also has some hope of overcoming
argumentB.

This gross increase in the complexity of simulations has par-
ticularly true of two platforms. First, the simulator developed
for the simulation league in the RoboCup soccer competition
has proven enormously successful. Although competition also

takes place on robots, to date the simulator league provides far
more “realistic” soccer games in terms of allowing the demon-
stration of teamwork between the players and flexible offensive
and defensive strategies [21, 19]. This success has encouraged
the RoboCup organization to tackle an even more complex sim-
ulator designed to replicate catastrophic disasters in urban set-
tings [20]. This simulator is intended to be sufficiently realistic
as to eventually allow for swapping in real-time sensory data
from disaster situations, in order to allow disaster relief to mon-
itor and coordinate both human and robotic rescue efforts.

The second platform is also independently motivated to pro-
vide the full complexity of the real world. This is the com-
mercial arena of virtual reality (VR), which provides a sim-
ulated environment with very practical and demanding con-
straints which cannot easily be overlooked. Users of virtual
reality bring expectations from ordinary life to the system, and
any agent in the system is harshly criticized when it fails to
provide adequately realistic behavior. Thórisson [30] demon-
strates that users evaluate a humanoid avatar with which they
have held a conversation as much more intelligent if it provides
back-channel feedback, such as eyebrow flashes and hand ges-
tures, than when it simply generates and interprets language.
Similarly Sengers [27] reviews evidence that users cannot be-
come engaged by VR creatures operating with overly reactive
architectures, because the agents do not spend sufficient time
telegraphing their intentions or deliberations. Such constraints
have often been overlooked in robotics.

In contrast, robots which must be supported in a single lab
with limited technical resources are likely to deal with far sim-
pler tasks. Robots may face far fewer conflicting goals, lower
time-related conflicts or expectations, and even fewer options
for actuation. Although robots still tend to have more natural
perceptual problems than simulated or VR agents, even these
are now increasingly being addressed with reliable but unnatu-
ral sensors such as laser range finders.

4.3 Roles for Robots and Simulations

Robots are still a highly desirable research platform. They pro-
vide complete systems, requiring the integration of many forms
of intelligence. Many of the problems they need to solve are
closely related to animal’s problems, such as perception and
navigation. In virtual reality, perfect perception is normally
provided, but motion often has added complication over that
in the real world. Depending on the quality of the individual
virtual reality platform, an agent may have to deliberately not
pass through other objects or to intentionally behave as if it were
affected by gravity or air resistance. Even in the constantly im-
proving RoboCup soccer simulator, there are outstanding diffi-
culties in simulating important parts of the game, such as the
goalkeeper’s ability to kick over opposing team members (cur-
rently compensated for by allowing the keeper to “warp” to any
point in the goal box instantaneously when already holding the
ball.)

Robots being embodied in the real world are still probably
the best way to enforce certain forms of honesty on a researcher.
A mistake cannot be recovered from if it damages the robot, an
action once executed cannot be revoked. Though this is also
true of some simulations [e.g. 31], particularly in the case of
younger students, these constraints are better brought home on
a robot, as it becomes more apparent why one can’t ‘cheat.’
Finally, building intelligent robots is a valid end in itself. Com-
mercial intelligent robots are beginning to prove very useful in
care-taking and entertainment, and may soon prove useful in ar-
eas such as construction and agriculture. In the meantime robots
are highly useful in the laboratory for stirring interest and en-
thusiasm in students, the press and funding agencies. However,
given the arguments above, we conclude that the use of robots
as experimental platforms is neither necessary nor sufficient in
providing evidence about complex agent intelligence. Robots,
like simulations, must be used in combination with rigorous ex-
perimental technique, and even so can only provide evidence,
not conclusive proof, of agent hypotheses.

In summary, neither robots nor simulation can provide a
single, ultimate research platform. But then, neither can any
other single research platform or strategy [15]. While not deny-
ing that intelligence is often highly situated and specialized
[14, 17], to make a general claim about agent methodology re-
quires a wide diversity of tasks. Preference in platforms should
be given to those on which multiple competing hypotheses can
be tested and evaluated, whether by qualitative judgments such
as the preference of a large number of users, or by discrete quan-
tifiable goals to be met, such as a genetic fitness function, or the
score of a soccer game.

5. Coordinating Hypothesis Testing

Whether there can be general solutions to problems of intel-
ligence is an empirical matter that has already been tested in
some domains. For neural networks and other machine learn-
ing methods, the UCI Machine Learning Repository holds a
large collection of benchmark learning tasks. Besting these
benchmarks is not a necessary requirement for the publication
of a new algorithm, but showing a respectable performance on
them improves the reception of new contributions. Essentially,
benchmarks are one indication for both researchers and review-
ers of when an innovation is likely to be of interest.

Further, Neal and colleagues at the University of Toronto
have constructed DELVE [24], a unified software framework
for benchmarking machine learning methods. DELVE contains
a large number of benchmark data sets, details of various ma-
chine learning techniques, currently mostly neural networks and
Gaussian Processes, and statistical summaries of their perfor-
mance on each task. One of the most important requirements is
that each method is described in enough detail that it could be
implemented by another researcher and would obtain a similar
performance on the tasks. This ensures that the mundane but
essential decisions that are an essential part of many learning

algorithms (e.g. setting weight decay parameters, choosing k in
k-nearest-neighbor rules) are not lost.

We propose a complex agent comparison server or web site,
to be at least partially modeled on DELVE. This site should al-
low for the rating of both agent approaches and comparison en-
vironments, thus encouraging and facilitating research in both
fields. It could also be annotated for educational purposes, in-
dicating challenges and environments well suited to school, un-
dergraduate, and graduate course projects. Such a site might
provide multiple indices, such as:

• Environments, ranked by number and/or diversity of partic-
ipants.

• Agent architectures (e.g. Soar, Behavior-Based AI). This
should also allow for the petition for new categories.

• Contestants and/or contesting labs or research groups . This
allows researchers interested in a particular approach to see
any related work. Ranked by the number and/or diversity of
environments.

Here are some examples of already existent platforms which
might be included on the server:

• RoboCup [21, 19].

• Khepera robot competitions. Both of these two suggestions
provide simulations as well as organized robotic competi-
tions. They test learning and perception as well as planning
or action selection.

• Tile World and Truck World, designed as complex planning
domains. [15]

• Tyrrell’s Simulated Environment [31] designed to test
action-selection and goal management.

• Chess.

• An analog Turing Test, using magnitude estimation to com-
pare dialog systems.

In addition, there are at least two software environments de-
signed specifically to allow testing and comparison of a number
of different architectures, though they contain no specific exper-
imental situations as currently developed. These environments
are Cogent [12] and the Simagent Toolkit [28].

6. Conclusion

To summarize, we believe that as agents approach the goal of
being psychologically realistic and relevant, their evaluation
will require the techniques that have been developed in the psy-
chological sciences. This evaluation is critical in providing a
gradient as we search for the right sorts of techniques to build
complex agents. The techniques of hypothesis testing have been
refined to describe truly complex agents. However, these are
scientific techniques, not proofs. They do not give us certain

answers, only more information. We believe many of the crit-
icisms of benchmark testing made in the past failed to prop-
erly acknowledge this feature of experimentation. We should
trust increased probability, rather than proof-theoretic guaran-
tees. The more people perform tests across competing hypothe-
ses, the more likely we will be to achieve our research goals,
whether they are engineering complex, social agents, or under-
standing the nature of intelligence.

Acknowledgments

The authors would like to acknowledge early discussions with
Brendan McGonigle and Ulrich Nehmzow on this topic.

References

[1] A. Agresti. Categorical Data Analysis. John Wiley and
Sons, 1990.

[2] J. S. Albus. Outline for a theory of intelligence.
IEEE Transactions on Systems, Man and Cybernetics,
21(3):473–509, 1991.

[3] Ronald C. Arkin. Behavior-Based Robotics. MIT Press,
Cambridge, MA, 1998.

[4] E. Bard, D. Robertson, and A. Sorace. Magnitude estima-
tion of linguistic acceptability. Language, 72(1):32–68,
1996.

[5] G. E. P. Box and G. C. Tiao.Bayesian inference in statis-
tical analysis. Addison-Wesley, Reading, Massachusetts,
1993.

[6] Joanna Bryson. Cross-paradigm analysis of autonomous
agent architecture.Journal of Experimental and Theoret-
ical Artificial Intelligence, 12(2):165–190, 2000.

[7] Joanna Bryson. Hierarchy and sequence vs. full paral-
lelism in reactive action selection architectures. InFrom
Animals to Animats 6 (SAB00). MIT Press, 2000.

[8] Joanna Bryson and Lynn Andrea Stein. Architectures and
idioms: Making progress in agent design. InThe Seventh
International Workshop on Agent Theories, Architectures,
and Languages (ATAL2000), 2000. to be presented July
2000.

[9] David Chapman. Planning for conjunctive goals.Artificial
Intelligence, 32:333–378, 1987.

[10] David Cliff, Philip Husbands, and Inman Harvey. Ex-
plorations in evolutionary robotics.Adaptive Behavior,
2(1):71–108, 1993.

[11] S. A. Cook. The complexity of theorem-proving proce-
dures. InProceedings of the Third Annual ACM Sympo-
sium on the THeory of Computing, pages 151–158, New
York, 1971. Association for Computing Machinery.

[12] R. Cooper, P. Yule, J. Fox, and D. Sutton. COGENT: An
environment for the development of cognitive models. In
U. Schmid, J. F. Krems, and F. Wysotzki, editors,A Cog-
nitive Science Approach to Reasoning, Learning and Dis-
covery, pages 55–82. Pabst Science Publishers, Lengerich,
Germany, 1998. see also http://cogent.psyc.bbk.ac.uk/.

[13] P. E. Fleiss and J. L. Shrout. Intraclass correlations:
Uses in assessing rater reliability.Psychological Bulletin,
86(2):420–428, 1979.

[14] C.R. Gallistel, Ann L. Brown, Susan Carey, Rochel Gel-
man, and Frank C. Keil. Lessons from animal learning for
the study of cognitive development. In Susan Carey and
Rochel Gelman, editors,The Epigenesis of Mind, pages
3–36. Lawrence Erlbaum, Hillsdale, NJ, 1991.

[15] Steve Hanks, Martha E. Pollack, and Paul R. Cohen.
Benchmarks, testbeds, controlled experimentation and the
design of agent architectures. Technical Report 93–06–05,
Department of Computer Science and Engineering, Uni-
versity of Washington, 1993.

[16] Ian D. Horswill. Specialization of Perceptual Processes.
PhD thesis, MIT, Department of EECS, Cambridge, MA,
May 1993.

[17] Ian D. Horswill. Specialization of Perceptual Processes.
PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, May 1993.

[18] N. Jakobi. Evolutionary robotics and the radical enve-
lope of noise hypothesis.Journal Of Adaptive Behaviour,
6(2):325–368, 1997.

[19] Hiroaki Kitano. Special issue: Robocup.Applied Artifi-
cial Intelligence, 12(2–3), 1998.

[20] Hiroaki Kitano. Robocup rescue: A grand challenge for
multiagent systems. InThe Fourth International Con-
ference on MultiAgent Systems (ICMAS00), pages 5–12,
Boston, 2000. IEEE Computer Society.

[21] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki
Noda, and Eiichi Osawa. RoboCup: The robot world cup
initiative. In Proceedings of The First International Con-
ference on Autonomous Agents. The ACM Press, 1997.

[22] J. R. Landis and G. G. Koch. The measurement of
observer agreement for categorical data.Biometrics,
33:159–174, 1977.

[23] R. S. Lockhart.Introduction to Statistics and Data Analy-
sis for the Behavioral Sciences. Freeman, 1998.

[24] R. M. Neal. Assessing relevance determination
methods using DELVE. In C. M. Bishop, ed-
itor, Neural Networks and Machine Learning,
pages 97–129. Springer Verlag, 1998. See also
http://www.cs.utoronto.ca/˜delve/ .

[25] U. Nehmzow, M. Recce, and D. Bisset. Towards intelli-
gent mobile robots - scientific methods in mobile robotics.
Technical Report UMCS-97-9-1, University of Manch-
ester Computer Science, 1997. Edited collection of pa-
pers, see also related special issue ofJournal of Robotics
and Autonomous Systems, in preperation.

[26] David L. Parnas. Software aspects of strategic defense
systems. American Scientist, 73(5):432–440, 1985. re-
vised version of UVic Report No. DCS-47-IR.

[27] Phoebe Sengers. Do the thing right: An architecture
for action expression. In Katia P Sycara and Michael

Wooldridge, editors,Proceedings of the Second Interna-
tional Conference on Autonomous Agents, pages 24–31.
ACM Press, 1998.

[28] Aaron Sloman and Brian Logan. Building cognitively
rich agents using the Simagent toolkit.Communications
of the Association of Computing Machinery, 42(3):71–77,
March 1999.

[29] L. A. Stein. Challenging the computational metaphor: Im-
plications for how we think. Cybernetics and Systems,
30(6):473–507, 1999.

[30] Kristinn R. Th́orisson. Communicative Humanoids: A
Computational Model of Psychosocial Dialogue Skills.
PhD thesis, MIT Media Laboratory, September 1996.

[31] Toby Tyrrell. Computational Mechanisms for Action Se-
lection. PhD thesis, University of Edinburgh, 1993. Centre
for Cognitive Science.

	3.2_Qin.pdf
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3.5_Tolety.pdf
	On Measuring Intelligence in Multi Agent Systems
	
	Siva Perraju Tolety

	A
	Abstract
	Introduction
	Intelligence and its Measurements in the Human Society
	Intelligence in Agents and Multi Agent Systems
	Measuring intelligence / performance in TRACE
	Conclusions
	References

